
We thank all the reviewers for the time devoted to provide thoughtful comments.1

[Reviewer # 1, Estimating information-theoretic distances] First, we would like to thank the reviewer for the2

comprehensive and accurate summary of our work. We are happy that the reviewer found our results to be novel and3

useful. We agree with the reviewer that estimating the distance between the learned representations are intractable,4

since the sample complexity of estimating Shannon entropy, mutual information and related concepts are exponential in5

the dimension of the representation space. That being said, one alternative way to do so is to consider the variational6

representations of f -divergence and use rich parametrized function class (e.g., neural networks) to approximate these7

distances. For example, recent work [2] on estimating mutual information has empirically shown that such approach8

often leads to better estimation result than classic approaches based on nonparametric density estimation. From this9

perspective, theH-divergence in Section 3.2 actually serves as a relaxation of the total variation distance and it equals10

TVD whenH contains all the measurable functions. Hence the lower bound in Proposition 3.1 gives us a practical way11

to estimate a proxy of TVD in terms of sum of Type-I and Type-II errors in distinguishing group memberships.12

[Reviewer # 1, Total variation in Theorem 3.3] The total variation in Theorem 3.3 is w.r.t the input distributions13

across groups, i.e., D0(X) and D1(X). In the remark we use “the distance of representation” to mean “the distance of14

input distributions”. We will clarify this sentence in our final version to avoid such confusion.15

[Reviewer # 1, Comparisons with existing work] The results in this paper are distinct from the results in [1].16

Specifically, the trade-off given in [1] (Proposition 8) is in terms of the fairness frontier function under the context17

of cost-sensitive loss. Roughly speaking, it shows that if the two decision functions are dissimilar to each other, the18

fairness constraint will not harm too much on the target utility. As a comparison, our results (Theorem 3.1 and 3.2)19

directly give lower bounds on the sum of errors across groups in terms of the difference in base rates as well as the20

distance of representations. Our results are also different from those in Madras and Zhang et al.: they gave an upper21

bound on the demographic parity gap in terms of the loss incurred by an adversary (Theorem 5.1), while ours are about22

lower bounds on the errors of the target task.23

[Reviewer # 1, Other questions] We use the notation P � Q to mean that distribution P is absolutely continuous24

w.r.t. distribution Q, i.e., for any measurable event E, if P(E) > 0, then we must have Q(E) > 0 as well. The25

generator function of KL divergence is indeed f(t) = t log t, and the generator function of the inverse KL divergence26

is f(t) = − log t. Having identical joint distributions implies that the optimal decision functions are the same across27

groups, but not the other way around. We also add one more experimental result with λ = 50.0, and the result is listed28

as follows. Compared with the existing results in Table 2, we can see a consistent trend.
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AdvDebias, ρ = 50.0 0.201 0.360 0.112 0.028
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[Reviewer # 3] We are happy that the reviewer found our paper to be interesting, theoretically sound and well-written.30

As stated in the last sentence of the conclusion section, our lower bound naturally implies an algorithm based on31

instance-reweighting to balance the base rates during fair representation learning. However, the detailed design, analysis32

and empirical validation of such an algorithm is beyond the scope of current paper. Given that nowadays there are33

more than tens paper on proposing new algorithms to achieve fairness every year, we believe it would be nice to have a34

theoretical paper with novel analysis techniques and results to study the fundamental limit of such algorithms. Although35

it is clear that fairness will compromise utility, before this paper it is still unknown to what extent will it, and how is it36

related to the difference in terms of base rates across groups. From this perspective, we believe our work is a timely37

paper that answers the above questions quantitatively. As pointed out by Reviewer 1, our analysis technique using Liese38

and Vadja lemma is novel and useful. This is of independent interest and we expect its applicability in a broader context.39

[Reviewer # 4] We would like to thank Reviewer 4 for the encouraging comments. As explained in Theorem 2.1.,40

Chouldechova and Kleinberg et al. mainly proved that positive rate parity and predictive value parity are in general41

incompatible. This is an impossibility result between two different notions of fairness. As a comparison, we mainly42

focus on trade-off between utility and fairness. Furthermore, our Theorem 3.1 is a quantitative result in the sense that43

it not only gives the impossibility statement when base rates are different, but also gives a lower bound on the error44

that will be incurred by any algorithm. Techniques based on instance-reweighting helps to decrease the difference in45

base rates, and hence we would expect it to help decrease the lower bound as well. This means that we would incur46

less drop of utility when learning fair representations. Our current technique does not extend to the definition of equal47

opportunity, and collecting additional data will not help.48
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