We thank the reviewers for carefully reading our submission and providing very thoughtful comments. We address the 1

reviewer comments below categorized into various issues. 2

Regarding the Threat/Trust Model (*Reviewer 1 and 4*): The aggregator needs to collect D_s points that closely match 3

 D_v in MMD distance. Therefore the aggregator at least sees $D_s + D_v$ points in this framework. This forms a natural 4

lower bound on how many points the aggregator has to access. We define a ρ -parsimonious aggregator who sees ρ times 5

the minimum required. On page number 3, we define this and our approach yields a $K^{1/3}$ -parsimonious aggregator. For 6

a data source i, all communication to the data source should be differentially private with respect to data points from all 7 other data sources $\bigcup D_i$ - i.e. knowing all but one point in the union as side information must not reveal much about 8

the missing point given the communication (standard informed adversary model with respect to union of other datasets). 9

Preservation of differential privacy across data sources constrains the aggregator to collect more points than necessary. 10

Hence, quality of the summary and parsimonious nature of the aggregator is traded-off with privacy requirements of the 11

data sources (with respect to each other). 12

Discussion on Incentivization (*Reviewer 2*): The idea is that every data source would be able to monetize their 13 contribution in proportion to the value they provide to the summary. After the protocol ends, value of a data source's 14 contribution could be deemed proportional to the sum of winning marginal bids from the source. Value attribution 15 based on this would be a incentive for data holders to participate. We will mention this. However, we only consider the 16

privacy aspects and not the incentivization in this work. 17

Regarding the Trust in Aggregator (*Reviewer* 4): The aggregator needs to train a downstream task on a test 18 distribution that is similar to D_v . That is why D_s points (much larger set) are being collected for training. In fact you 19 could think of aggregator paying for the D_s points. So the best set of points (up to the approximation guarantee in our 20 algorithm) that the aggregator could have is through this protocol. There is no incentive for aggregator to cheat since it 21 has to pay for the points it collects. The data providers are happy to provide a set as long as they are compensated and 22 other data sources do not know about their data (in a differential privacy sense.) We will make this point clear in our 23

draft. 24

Regarding Federated Learning vs Our Approach: (*Reviewer* 4) This is a good point – in fact, we do point out the 25 distinction of our approach vs federated learning in the experimental section (lines 289-295). We will add a note in the 26 related work section as well. Indeed, here we deal with a transfer learning problem. The validation set distribution 27 is distinct from each of the individual data source distributions. We are focused on a setting involving significant 28 covariate shifts between validation set and training data sources. In fact in our experiments, uniform sampling (which is 29 a proxy for gradient updates in a federated style algorithm that works by uniformly sampling points across datasets) 30 has a poorer performance compared to our method. We are collecting points that closely resemble the validation data. 31 32 Federated learning would assume a training distribution that is typically uniform or mixed in a specific ratio using different sources. Transfer learning component or the distibutional shift between D_v and each individual D_i makes the 33 problem non-trivial. 34

Regarding Rahimi&Recht and Missing Citations (*Reviewer* 4): We do cite Sarwate's paper (Chaudhuri, Monteleoni 35 and Sarwate, 2011) - citation number 3, on line number 79. However, we miss citing Rubinstein's paper, which we will 36 rectify. Although, Rahimi-Recht's method has been used in privacy before, we use it in a novel way in combination 37 38 with MWEM and a private auctioning protocol, to solve the distributed data summarization problem under covariate

shifts and differential privacy constraints. 39

Differentiation between our Private Auction and the Exponential Mechanism (*Reviewer 4*): In Step 6, each data 40 source selects its "local marginally best point" and submits its value as a bid to the aggregator. It is not necessary that 41 such a point will be chosen by the aggregator. In our private auction, if a point is chosen by a data source τ times the 42 source would submit the point to the aggregator to be included into the final summary (it is easy for the aggregator 43 to verify that a point has been chosen τ times using the corresponding bids submitted by the data source). Although, 44 there is a superficial resemblance with the exponential mechanism, our private auction is significantly different. First 45 note that there is no "loss" in value of the best point chosen in our mechanism, indeed the probability of choosing the 46 best point is $e^{-\epsilon_{auc}(1-1)} = 1$. The second key difference is in the way we prove the guarantees in our mechanism. 47 While the exponential mechanism selects one approximately "best" point, we flip a coin for every bid whose bias has an 48 exponential decreasing relationship to the position of the bid in sorting order. Then, we choose multiple of them (instead 49 of one) and a key proof point is to show that we can restrict the number of the points chosen overall. In fact the bias 50 probabilities do not even depend on the bid value (i.e., "score") while it would be the case for exponential mechanism. 51 We were short on space and could not add the insights on Thm 2 but we will do it in the camera ready if accepted. 52

Explanation of the Protocol (All Reviewers): We will add explanations for various steps of our protocol to make 53 different parts clear. We will also address all the grammatical and typographical errors in our submission. 54