
We would like to thank all the reviewers for their thoughtful reviews and helpful suggestions. We were delighted to1

see that the paper was unanimously well received and were particularly happy to see that the reviewers agreed that the2

work has the potential to make a big impact. We are excited about variational BOED and follow-up work indicates that3

VBOED opens the door to further developments in machine learning, statistics and other fields. We turn now to specific4

comments and questions.5

Reviewer 1 Thank you for your review.6

1. More concrete examples in Section 2 is a great suggestion which we will implement in time for the camera7

ready, if accepted. To be specific, in the psychology trial example, the design d is the choice of question, θ8

represents the parameters of an underlying psychological model p(y|θ, d), and y is the participant’s response.9

Reviewer 2 Thank you for your review.10

1. Thank you for pointing out our mistake with the reference for the variational marginal bound. We will be sure11

to correct this.12

2. We are glad you brought the issue of high-level intuition for VNMC to our attention and we will make updates13

to be clearer here. To give some additional explanation, both the NMC and VNMC estimators take the form14

EIG(d) ≈ 1

N

N∑
n=1

log
p(yn|θn, d)
p̂(yn|d)

where yn, θn
i.i.d.∼ p(θ)p(y|θ, d) (1)

where, for NMC, p̂NMC(y|d) = 1
M

∑M
m=1 p(y|θm, d) where θm

i.i.d.∼ p(θ). Written in this way, we see that15

NMC is approximating p(y|d) using samples from p(θ). We expect better approximations of p(y|d) using16

samples from a proposal qv(θ|y) that is close to the posterior p(θ|y, d), i.e.17

p̂VNMC(y|d) =
1

M

M∑
m=1

p(θ)p(y|θm, d)
qv(θ|y)

where θm
i.i.d.∼ qv(θ|y) (2)

which leads to the VNMC estimator. It is also important to establish the bounds of Lemma 1, because these18

allow a variational training method for qv .19

3. We agree that Poole, et al. (2019) is an important reference and will make sure it is discussed in the main text.20

4. Table 1: thanks for picking this up. We agree a pointer to Section 5 would be helpful.21

5. A1 and A2: we will be sure to indicate that these proofs were added for completeness and add references.22

6. A3: thanks for picking up these typos!23

Reviewer 3 Thank you for your review.24

1. This is an interesting point where we could have been clearer. In the sequential setting, we assume that25

p(y1:t, θ|d1:t) = p(θ)

t∏
τ=1

p(yτ |θ, dτ ) (3)

which says that experiments are conditionally independent given designs and θ. After conducting experiments26

1, ..., t− 1 we have p(yt, θ|y1:t−1, d1:t−1, dt) = p(θ|y1:t−1, d1:t−1)p(yt|θ, dt) and now select dt conditional27

on d1:t−1, y1:t−1 using the new prior p(θ|d1:t−1, y1:t−1). The entropy of this new prior distribution is a28

constant with respect to dt which is why we can drop it on line 169. The new prior still makes its presence felt29

in the other term in Lpost, namely Ep(θ|d1:t−1,y1:t−1)p(y|θ,dt)[log qp(θ|y, dt)].30

2. We agree that the lower bias of µm+` compared to µpost may at first sight be unintuitive. Although µm+` uses31

two variational approximations compared to one for µpost, the approximations are for variables which have32

different dimensionality. If y has a lower dimension than θ, it may make sense to use µm+` instead of µpost.33

On the other hand, µm+` uses the same approximation as µmarg plus an extra one. We would never recommend34

using µm+` in place of µmarg (cf. line 186), but one may have to fall back on µm+` in an implicit likelihood35

setting.36

In our experiments, parameters were not shared between qm and q`, although this is an interesting idea that37

could further reduce the bias. A limited discussion of this idea appears at the end of Section A.4 (it can actually38

lead to a new lower bound, but requires additional assumptions).39
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