Rebuttal for submission 7667 - Rand-NSG

Reviewer 1: We will release our code along with the paper.

Reviewer 2:

Our main goal was to enable high performance SSD-friendly indices on inexpensive workstations. Towards this goal,
as you have suggested, we have adapted known techniques, and, where necessary, contributed new techniques as well.
A few contributions are: (1) We introduce a new pruning strategy parameterised by « that reduces the number of
hops from navigating vertex to any other vertex. This provides a greater control over the diameter of the graph
which is important for disk search. This is a feature that previous methods like NSG and HNSW lack. Using our
pruning with a higher o > 1 parameter will yield more longe range edges and reduces the diameter of the graph. The
practical benefits of this idea can be seen in Figure 2(b) in the submission, where we notice that the number of hops
required for search improved with the degree of the graph for Rand-NSG, and plateaus for NSG and HNSW. (2) We
also introduce a 2-pass construction algorithm, that allows us to use lower L for index construction, thus improving
the construction speed necessary for a target graph index quality (compared to NSG and HNSW). (3) We provide a
high quality implementation of disk-based search.

100 100
99.5 o S
o S
S = 95 ~
® 99 9 i
e g /
& 985 = —— Optimized Search (NSG)
3 & 90
g ——HNsw =1 / Optimized Search (Rand-NSG)
98 Optimized Search (Rand-N5G)
Optimized Search (NSG) HNSW
97.5 85
400 500 600 700 800 900 1000 2000 4000 6000 8000 10000 12000
- M
|SIFTAM Search time/query (microseconds) | GIST1M Search time/query (microseconds)

QPS plots: We will expand on the plots above comparing NSG, HNSW, and Rand-NSG. Rand-NSG indices can
be searched with NSG in-memory search (we did not implement a separate in-memory search since our focus was on
disk search). The plots above suggest that Rand-NSG indices are competitive with NSG and HNSW. Considering
that they use roughly the same search algorithm for querying, we focused on the number of distance comparison per
query as a machine-agnostic way of comparing the algorithms.

Reviewer 3: Thank you for pointing out citations we have missed or erred on (e.g., in lines 27, 127, 154, 196, 249).
We will update related work, give due credit to missed citations and do a pass over the writing. Re. other questions:

e Yes, base points mean domain points. We’ll clarify the notation.
22-23 : Why not 200 — 3007 Could well be, we have experimented with 960-dimensional GIST in the paper.

29 : We will define the recall formally in the final version. a-recall@b means the percentage of points among the
a points that intersect with the true b nearest neighbor. We’ll also clarify that the goal is maximizing search
efficiency for a given recall, rather than the recall itself.

37 : We will temper the claim and suggest that graph-based methods produce some of the best indices. We'll give
NN-descent algorithms credit in related work.

39 : We do not have a concrete definition of navigable graphs; we roughly mean those graphs on which greedy-like
iterative search heuristics converge rapidly.

40 : We will clarify the differences between our search and pure greedy search.

e We will report numbers on DeeplB. We have preliminary evidence suggesting that we can achieve 95% recall@1
with Hms latency and 30GB working memory.

We'll also discuss the pruning strategy used by HNSW and NSG in our final version, and contrast with Rand-NSG.

