- We thank the reviewers for the not-so-common careful reading.
- 2 Following your suggestions:
- 3 The write-up was significantly improved and was sent to a professional English editor.
- 4 Pseudo code was replaced by more intuition and illustrations.
- 5 Python's code was extended with comments and examples on "extreme" synthetic data to give more intuition. As
- 6 promised, It will be published upon acceptance, and can be sent to the reviewers already now if necessary.
- k-Means for lines is much harder than the k-means for points which has numerous approximations and coresets. We try
- 8 to intuitively explain why below. This is also the reason why it took us few years to write this paper that suggests the
- 9 first solution to such a fundamental problem in machine learning. Extension of this explanation was added to the new
- 10 version.

11 Reviewer 1:

- 12 **Q1:** Do you assume that the input space is discrete and bounded?
- A1: Certainly not. As stated in the main theorems, the guarantees of the algorithms hold for any set of n lines in \mathbb{R}^d .
- 14 No hidden assumptions.
- 15 Q2: The objective function of the k-means line clustering problem is confusing. In Line 1 it is minimizing sum of
- squared distances, which is exactly same as k-means. Later on it changes to minimizing sum of distance. I am not sure
- this comparison is fair because EM k-means is to minimize the sum of squares.
- A2: This is indeed confusing. The reason is that for simplicity we focused on the classic k-means. However, the results
- easily generalized to any Lipschitz function of distance, including sum to the power of z > 0 or m-estimators. Following
- this comment, we focus only on squared distances (including experimental results) and moved the generalization to the
- last section. We thank the reviewer for this useful comment.

22 Reviewer 2:

- 23 Q1: The paper is extremely difficult to read for a non-expert. Give intuition and move the pseudo-code.
- 24 A1: Indeed, to obtain such strong provable guarantees we had to use deep mathematical proofs. To help the non-expert:
- 25 (1) We accepted the reviewer's suggestion and replaced the pseudo code by illustrations that were added to the overview.
- (2) We added detailed comments to our open Python's scripts, as well as example data sets of extreme cases that give
- 27 intuition about how and why the algorithms work.

28 Reviewer 3:

- 29 We appreciate the careful reading of the reviewer.
- 30 Q1: You are saying that you have a deterministic algorithm but the theorem says the opposite.
- A1: This is indeed a mistake in the introduction that was fixed. Algorithm 1 is deterministic as claimed in Lemma 6.3,
- but our coreset construction holds with high probability as stated in the main theorem.
- Q2: Why using EM + k-means++ and not simply k-means++?
- 34 **A2:** k-means++ was never used in this paper. Unlike EM, we could not generalized k-means++ for lines. The reason is
- 35 that both its input and output sets are points. In k-line means, the input is a set of lines and the output is a set of points.
- Moreover, the correctness of k-means++ heavily based on metric spaces, while the triangle inequality does not apply
- for a set of lines in \mathbb{R}^d . For example, constructing a coreset for the case that the optimal cost is 0 is trivial in k-means
- but not for k-line-means.
- 39 **Q3:** How did you compute the optimal solution?
- 40 **A3:** We use exhaustive search (few days of computation on Amazon's cloud). This is part of our open source code.
- 41 **Q4:** It seems to me that for getting an offline $(1+\epsilon)$ -approximation, one may be able to combined your lemmas on
- sampling (say Lemma 6.3) together with a Simple D^2 -Sampling.
- 43 **A4:** We aware of this result but unfortunately could not apply it due to the reasons in **A2** above. It would be awesome if
- the reviewer can give us a hint in case we missed something.