
Reply to Reviewer 1. Most existing works put a prior on the worker accuracies too. Furthermore,1

variational mean field is used for the one-coin DS model by Liu et al. 2012. The novelty in our paper2

is how we optimise over the KL divergence in Eq. 5. In order to get an analytical form, we need3

both the Beta prior and a single-data update. Note that, while FBI can be interpreted as a form of4

stochastic GA, it does not correspond to its classic framework.5

Other remarks: first, we will add a figure on the label reordering. Second, F (•) and G(•) have a6

probabilistic interpretation, but it only becomes clear after going through the proofs. Third, MC7

computes the true posterior. This is optimal when the model assumptions are met (synthetic data),8

but less robust when they are not (real data). References and implementation details are in Appendix9

C. Fourth, common practice in crowdsourcing is setting the uninformative prior α = 2, β = 1. Fifth,10

the error bars are present but small (see Appendix C). Sixth, refer to our reply to reviewer 2 (point 4).11

Finally, we perform crowdsourcing when the workers, on average, are correct more often than not.12

Reply to Reviewer 2. 1. A streaming algorithm allows the use of the US policy. This yields13

provably better accuracy than non-adaptive policies in crowdsourcing applications (Manino et al.14

2018). We confirm this for FBI on synthetic data in Figure 1. To the best of our knowledge, there are15

no publicly available non-static datasets.16

2. FBI relies on estimating the worker accuracies given the data observed so far (Eq. 7). If we change17

the order of the data, the sequence of estimates changes. This can affect the output of the algorithm.18

We will add a figure to illustrate this.19

3. Our assumption holds when either the workers are very accurate or R grows large. For example, in20

Figure 1b the theoretical error slope is attained for R as small as 30. We will clarify this in the paper.21

4. Our algorithm is designed for speed and theoretical guarantees. The empirical analysis shows that22

its accuracy is similar to the state of the art. We will move the running times to Section 5. Also, we23

will add the EM benchmark (see table below). On synthetic data, EM is slightly worse than AMF.24

Dataset KOS MAJ MC Sorted FBI Fast FBI AMF TE EM

Birds 0.278 0.241 0.341 0.298 0.260 0.278 0.194 0.278
Ducks 0.396 0.306 0.412 0.405 0.400 0.412 0.408 0.412
RTE 0.491 0.100 0.079 0.072 0.075 0.075 0.257 0.072
TEMP 0.567 0.057 0.095 0.062 0.059 0.061 0.115 0.061
TREC 0.259 0.257 0.302 0.239 0.251 0.266 0.451 0.217

Reply to Reviewer 3. Referring to Equation 5, the value of q sets the starting value of the log-odds25

z0i . If we have prior information, we can use q to bias z0i . Otherwise, we can set an uninformative26

prior q = 1
2 and thus z0i = 0. We use the latter in all our experiments.27

To work in a streaming setting, Algorithm 2 needs to be implemented differently (see below). There28

we maintain a separate view of the log-odds vk for each task k ∈M , and use it to run |M | copies of29

Fast FBI in parallel. Note that in lines 9-13 we are computing the real log-odds by processing all30

data points we skipped in lines 2-8. This operation has to be performed for every t. Since the online31

version takes more space to explain, we will dedicate an appendix to it.32

Algorithm 1 Sorted FBI (online version)
Input: dataset X , availability a, policy π, prior θ
Output: predictions ŷ

1: vki = log(q/(1− q)), ∀i, k ∈M
2: for t = 1 to T do
3: i← π(t)
4: j ← a(t)
5: for all k ∈M : k 6= i do

6: p̄kj ←
∑

h∈Mt
j
\k sig(xhjv

k
h)+α

|Mt
j\k|+α+β

7: vki ← vki + xij log(p̄kj /(1− p̄kj ))

8: zti = log(q/(1− q)), ∀i ∈M
9: for u = 1 to t do

10: i← π(u)
11: j ← a(u)

12: p̄ij ←
∑

h∈Mt
j
\i sig(xhjv

i
h)+α

|Mt
j\i|+α+β

13: zti ← zti + xij log(p̄ij/(1− p̄ij))
14: return ŷi = sign(zTi ), ∀i
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