
Table 1: Additional computational cost.
Dataset Model Real Theoretical

C10+ ResNet-110 4.65% 0.002%
DenseNet-100-12 5.50% 0.024%

C100+ ResNet-110 5.23% 0.004%
DenseNet-100-12 12.03% 0.053%

ImageNet ResNet-152 10.75% 0.082%

General Concern: Complexity of ISDA. Theoretically, the computational1

complexity of updating the covariance matrices at each iteration is O(B×D2)2

(using the online update equations in Supplementary A), where B is the batch3

size and D is the feature space dimension. In comparison, a typical ConvNet4

with L layers requires O(B×D2×K2×H×W×L) operations, where K is5

the filer kernel size, and H and W are the height and width of feature maps,6

respectively. Consider ResNet-110 on CIFAR (C10 & C100) as an example, for which we have K=3, H=W =8 and7

L=109 (ignoring the last FC-layer), then the extra computation cost of ISDA is up to four orders of magnitude less8

than the total computation cost of the network.9 Table 2: Results with smaller
datasets. (r: proportion of
samples used for training.)

r w/o ISDA w/ ISDA
100% 28.67±0.44% 27.57±0.46%
80% 30.99±0.33% 30.29±0.03%
60% 34.89±0.76% 33.47±0.35%
40% 41.82±0.86% 39.71±0.38%
20% 56.28±0.80% 52.16±0.45%

Empirically, due to implementation issues, we observed a 5% to 12% increase in training10

time. Results are shown in Table 1. We will add these results and analysis in our revision.11

Reviewer #1
1. Experiments with Fewer Training Samples. As suggested, we run ISDA on C100+12

using ResNet-110, with a varying number of training samples. The results are shown13

in Table 2. It can be observed that ISDA achieves improvements consistently, and14

performance gain seems to be more notable with fewer samples. For example, with 20%15

of training samples, ISDA outperforms the baseline by 4.12%.16

Reviewer #2
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Figure 1: Failures.

1. Failure Cases. We collect some cases when ISDA fails to produce meaningful semantic17

transformations, as shown in Fig. 1. Failures usually occur when an input image shows18

great semantic differences from typical images in its class. For example, the first image in19

Fig. 1 shows only the head of a bird, while most images show the entire body. A plausible20

explanation is that the semantic directions for these images are not well captured by the21

covariance matrix which is dominated by the majority of typical samples.22
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Figure 2: Values of L∞ and L∞.

2. Training Curves on CIFAR. Thanks for the suggestion. We will update our23

paper with training curves. Notably, ISDA consistently achieves a slightly higher24

training error but lower test error, indicating its regularization effect.25

3. Tightness of the Upper Bound L∞. The upper bound follows from the Jensen’s26

inequality E[logX] ≤ logE[X], and the equation holds when λΣi → 0. To check27

the tightness of L∞ in practice, we empirically calculate L∞ and L∞ over the28

training iterations, where L∞ is estimated using Monte-Carlo sampling with sample29

size 1000, shown in Fig. 2. We can observe that L∞ gives a very tight upper bound.30

4. Gaussian Assumption. Indeed, the Gaussian assumption seems to be strong. But as we discussed in the introduction,31

formulating the true distribution requires to find all possible semantic directions, which is practically intractable. Our32

algorithm achieves a nice tradeoff between tractability and accuracy by making this assumption. Please refer to the 3rd33

paragraph in our Introduction and the first paragraph in Section 3.1 for detailed discussion.34

Reviewer #3
Table 3: Different configurations

ISDA AutoAugment
Total Epochs 160 200
Weight Decay 1e-4 5e-4

Cosine Learning Rate × X

1. Weak Baseline Results. Thanks for pointing out this issue. We have carefully35

checked our code and results during the rebuttal period, and find that some of our36

reproduced results on CIFAR (mostly for Wide-ResNet) are indeed worse than that37

reported in existing work. The reason is that we reproduced all these results by38

ourselves (in order to give a clean comparison), and we used the hyperparameters39

for ResNets to train Wide-ResNets, which tend to give inferior results (Wide-ResNets used improved training techniques).40

These differences are listed in Table 3. In addition, most existing work use all 50,000 samples for training and usually41

report the best results over iterations, while we held out 5,000 from the training set for validation.42

Table 4: Comparisons with explicit aug-
mentation methods.

Method C10+ C100+
WRN-28 3.82±0.15% 18.58±0.10%

WRN-28 + ISDA 3.58±0.15% 17.98±0.15%
WRN-28 + CT 2.99±0.06% 18.05±0.25%

WRN-28 + CT+ISDA 2.83±0.04% 17.02±0.11%
WRN-28 + RE 3.10±0.11% 17.98±0.28%

WRN-28 + RE + ISDA 2.95±0.09% 17.03±0.24%
WRN-28 + AA 2.65±0.07% 16.63±0.17%

WRN-28 + AA + ISDA 2.56±0.01% 15.38±0.11%

Although with the above issues, we argue that our results are still valid,43

because (1) most of the baseline results are not affected and are competitive;44

and (2) even for affected cases, our comparison is fair because our ISDA used45

the same hyperparameters as the baselines.46

After fixing the hyperparameter settings, we successfully reproduced stronger47

baselines. The new results are shown in the first two rows in Table 4, and48

ISDA still leads to better results. We will update the paper with these results.49

2. Comparisons with Explicit Augmentation. Thanks for the suggestion.50

We have experimented with several recently proposed explicit data augmenta-51

tion techniques, i.e., Cutout(CT), Random Erasing (RE) and AutoAugment (AA). From Table 4, it is clear that ISDA52

can still consistently improve their performance. In fact, our algorithm performs data augmentation in the feature space,53

and it is complementary to those explicit augmentation techniques in the input space. This can also be validated by our54

results on CIFAR w/ and w/o data augmentation shown in Table 1 in the paper.55


