
We thank the reviewers for their valuable feedback, recognizing our work as an “interesting contribution for a1

fundamental task” (R2) with “clear contribution over prior state of the art” (R3) that will “definitely impact future work”2

(R1). The novelty in the losses is unanimously praised (R1, R2, R3), as well as the “promising” (R1) and “convincing3

results” (R2, R3) that we present. We answer their main concerns below and will update the final version accordingly.4

Contributions. We will follow R2’s suggestion to improve the presentation of the major contributions w.r.t the literature.5

Regarding R3’s statement on limited novelty, we stress that SuperPoint [8] starts the learning of the keypoint detectors6

and descriptors at different stages, while the crux of our approach is that we learn both of them jointly from scratch7

(therefore without introducing any bias). One of our contributions is to show how this can be done efficiently and8

without relying on arbitrary synthetic data and annotations as in [8].9

Compared to D2-Net [10], another one of our contribution is to highlight the importance of treating repeatability and10

reliability as separate entities represented by their own respective score maps. Our novel AP-based reliability loss allows11

us to estimate patch reliability during training according to the AP metric while simultaneously optimizing for the12

descriptor. In a single batch, each patch is typically compared to one positive versus thousands of other negative patches.13

In contrast to “Predicting matchability” by Hartmann et al. (R3) that predicts reliability given fixed descriptors, our14

novel loss tightly couples descriptors and reliability estimates.We will add a discussion in the related work. We believe15

that this capability cannot be achieved with the standard contrastive and triplet losses used in prior work. Overall, these16

advances are made possible by our novel losses that are unlike any of the ones used in [8,10,18,32,46].17

Single-scale and inference time (R1). We have evaluated our model at a single-scale (full image size), in the same18

settings as in Figure 4 (N = 32 and K = 3000 kpts/img). We obtain 0.695 MMA@3px compared to 0.725 MMA@3px19

in the multi-scale settings. On a Tesla P100 GPU, it takes about 20 seconds to process a 1M pixel image (all scales,20

with a scaling factor equal to 4
√
2). Computing with a single-scale (full size) requires 30% of the total time, i.e., 6s.21

Training data and cross-dataset experiments (R1,R3). To clarify, we use three sources of data to train our method:22

(a) distractors from a retrieval dataset [35] (i.e. random web images), for which we build a synthetic image pair by23

applying a random transformation (homography and color jittering), (b) images from the Aachen dataset [42,44] with24

the same synthetic strategy to build a pair, and (c) pair of nearby views from the Aachen dataset where we obtain a25

pseudo ground-truth using optical flow (Section 3.3). Note that we do not use any image from HPatches at training.26

In order to further study performance on other datasets, R1 suggested to use AMOS Patches. However, AMOS27

only evaluates for patch retrieval without the detection phase and thus not properly evaluates our approach. Instead,28

we provide new results for the visual localization task on the Aachen Day-Night dataset, as in D2-Net [10]. This29

corresponds to a realistic application scenario beyond traditional matching metrics. The goal is to find the camera poses30

in night images (not included in training), given the images taken during day in the same area with their known poses.31

We follow the “Visual Localization Benchmark” guideline: we use a pre-defined visual localization pipeline based on32

COLMAP, with our matches as input. They are used to reconstruct a SfM model in which test images are registered.33

Reported metrics are the percentages of successfully localized images within three error thresholds.34

Method #kpts dim #weights 0.5m, 2◦ 1m, 5◦ 5m, 10◦
RootSIFT [23] 11K 128 - 33.7 52.0 65.3
HAN+HN [28] 11K 128 2 M 37.8 54.1 75.5
SuperPoint [8] 7K 256 1.3 M 42.8 57.1 75.5

DELF (new) [30] 11K 1024 9 M 39.8 61.2 85.7
D2-Net [10] 19K 512 15 M 44.9 66.3 88.8

R2D2, N = 16 5K 128 0.5 M 45.9 65.3 86.7
R2D2, N = 8 10K 128 1.0 M 45.9 66.3 88.8

Table 3. Comparison to the state of the art on the Aachen Day-Night
dataset for the visual localization task. The last row is performed

with an increased number of channels

Training data HPatches Aachen Day-Night
W A S F MMA@3px 0.5m, 2◦ 1m, 5◦ 5m, 10◦
X 0.665 43.9 61.2 77.6
X X 0.685 42.9 60.2 78.6
X X X - 42.9 61.2 84.7
X X X 0.691 43.9 63.3 86.7
X X X X - 45.9 65.3 86.7

Table 4. Ablation study for the training data. W=web images;
A=Aachen-day images; S=Aachen-day-night pairs from

automatic style transfer; F=Aachen-day real images pairs. For
W,A,S we use random homographies; for F optical flow.
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For the localization task, we include an additional source of data, denoted as S, comprising night images automatically36

obtained from daytime Aachen images by applying style transfer. In Table 3, we compare our approach to the state of37

the art on the Aachen Day-Night localization task. Our approach outperforms all competing approaches at the time of38

submission. Table 4 shows the impact of the different sources of training data, with N = 16 and K = 5000 kpts/img39

(same settings as the last row but one in Table 3). We first note that training only with random web images and random40

homographies already yields high performance on both tasks: state-of-the-art on HPatches, and significantly better than41

SIFT, HAN, and SuperPoint for the localization task, showing the excellent generalization capability of our method.42

Adding other data sources leads to small performance gains.43

We point out that our network architecture is significantly smaller than other networks (up to 15× less weights) while44

also generating much less keypoints per image. Our keypoint descriptors are also much more compact (128-D only)45

compared to SuperPoint, DELF or D2-Net (resp. 256-, 1024- and 512-dimensional descriptors).46

Code (R2). We will release the code upon acceptance.47


