
We thank the reviewers for their positive feedback and will make the suggested improvements in the paper. Given the1

extra page allowed for accepted papers, we will include the discussions and experiments resulting from this feedback.2

We kindly hope the reviewers take this into account when finalizing their scores. Responses below are ordered w.r.t. the3

reviewer comments (e.g., R2.3 refers to Reviewer 2’s 3rd comment).4

R1.1 Figure 6.2 presentation: Agreed, Fig. 6.2’s presentation will be improved. We thank the re-5

viewer for the suggestions. We will move extraneous plots from Fig. 6.2 to the appendix and increase6

the plot sizes for readability. We will do the same for other figures where applicable. R1.2 Sec. 5,7

move CSSP details to the appendix: Agreed, per the reviewer’s suggestion, we will expound on the8

higher-level details & intuitions in the section itself, and move the technical details to the appendix.9
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Figure R1: Distribution of
payoff gaps ∆(s, σ).

R1.3 Theorem 4.1 & sampling strategy comparisons: Indeed, Theorem 4.1 is agnostic10

of the chosen sampling scheme; while we note this in the text preceding the theorem,11

we will update the theorem statement itself to make this property explicit. Note that12

Fig 6.2 visualizes empirical differences between the different sampling strategies. Overall,13

CP-UCB seems to attain best empirical performance by a small margin, which can14

be explained due to the Bernoulli meta-game outcomes (which are win/loss in nature).15

R1.4 & 1.5 Fig. 6.3: Good point, we will correct the wording regarding the positive16

correlation of errors and tolerances here. Regarding the higher variance of Poker results,17

let us consider the distribution of payoffs gaps, which play a key role in determining18

response graph reconstruction errors. Let ∆(s, σ) = |Mk(s) −Mk(σ)|, the payoff19

difference corresponding to the edge of the response graph where player k deviates,20

causing a transition between strategy profiles s, σ ∈ S (see paper lines 91–92 for precise21

definitions). Figure R1 plots the ground truth distribution of these gaps for all response22

graph edges in Soccer & Poker. The higher ranking variance may be explained by these23

gaps tending to be more heavily distributed near 0 for Poker. R1.6 Bernoulli game24

payoffs: We agree that it would be interesting to evaluate bound tightness, and plan to investigate this in future work.25

R2.1 & 2.2 Alternative approaches, e.g., collaborative filtering: We thank the reviewer for the interesting and26

important question regarding alternative approaches. The pairing of bandit algorithms and α-Rank is a natural means of27

computing rankings in settings where, e.g., one has a limited budget for adaptively sampling match outcomes. Our use28

of bandit algorithms also leads to analysis which is flexible enough to be able to deal with K-player general-sum games.29

However, approaches such as collaborative filtering may indeed fare well in their own right. We provide discussion of30

one such application below, specifically for the case of two-player win-loss games.31

For such games, the meta-payoff table is given by a matrix M with all entries lying in (0, 1) (encoding loss as payoff 032

and win as payoff 1). Taking a matrix completion approach, we might attempt to reconstruct a low-rank approximation33

of the payoff table from an incomplete list of (possible noisy) payoffs, and then run α-Rank on the reconstructed34

payoffs. Possible candidates for the low-rank structure include: (i) the payoff matrix itself; (ii) the logit matrix35

Lij = log(Mij/(1−Mij)); and (iii) the odds matrix Oij = exp(Lij). In particular, Balduzzi et al. (2018) make an36

argument for the (approximate) low-rank structure of the logit matrix in many applications of interest.37

Per the reviewer’s suggestion, we have now conducted preliminary experiments on this in Fig. R2, implementing matrix38

completion calculations via Alternating Minimization (Jain et al., 2013). We compare here the resulting α-Rank errors39

for the three reconstruction approaches for the Soccer meta-game. We sweep across the observation rates of payoff40

matrix entries and the matrix rank assumed in the reconstruction. Interestingly, conducting low-rank approximation on41

the logits (as opposed to the odds) matrix generally yields the lowest ranking error. Overall, the bandit-based approach42

may be more suitable when one can afford to play all strategy profiles at least once, whereas matrix completion is43

perhaps more so when this is not feasible. We will append these discussions and results to the paper.
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Figure R2: Ranking errors (Kendall’s distance w.r.t. ground truth) from completion of, respectively, the sparse payoffs,
logits, and odds matrices for Soccer dataset. 20 trials per combo of assumed matrix ranks and observation rates/density.44

R3.1 We thank the reviewer for the positive feedback. Indeed, the bounds in Sec. 3 are not directly related to the final45

algorithm, in contrast to the bound in Sec. 4; we also plan to investigate the possibility of tightening the former bounds.46

References: Balduzzi, D., Tuyls, K., Perolat, J., & Graepel, T. (2018). Re-evaluating evaluation.47

Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization.48


