
@Reviewer 1. Your detailed comments were much appreciated. ● The irreducible term involving V ′
n does not1

necessarily prevent a fast rate in the realizable setting as we will clarify now: First, suppose thatQ is chosen to satisfy (6)2

(this assumption will simplify the argument that follows at the price of weakening our bound slightly). With this choice3

of Q, one can now see that V ′
n is just a measure of the average performance of hypotheses drawn from the “alternate4

posterior” Q≤m [resp. Q>m] on the unseen i.i.d. sample Z>m [resp. Z≤m]. Thus, when ∣`∣ ≤ 1 and m = n/2, the first5

sum in the expression of V ′
n satisfies ∑mj=1Eh∼Q>m[`h(Zj)

2]/n ≤ ∑
m
j=1Eh∼Q>m[`h(Zj)]/n ≤ L(Q>m)/2+ Õ(1/

√
n),6

where the last inequality holds w.h.p. due to Hoeffding. By applying the same treatment to the second sum in V ′
n, we7

arrive at (*): V ′
n ≤ (L(Q≤m) +L(Q>m))/2+ Õ(1/

√
n) (w.h.p.). If Q is chosen to be ERM, for example, then the risks8

L(Q≤m) and L(Q>m) are often very small in the realizable setting (as they approach the zero Bayes risk). If these risks9

are of order 1/
√
n, then due to (*), our irreducible term C

√
R′
n ⋅ sδ,n /n = C

√
V ′
n ⋅ sδ,n /n in (1) is of order Õ(1/n). In10

contrast, McAllester’s bound can be of order Õ(KL/n) in the realizable setting, and so in this case our irreducible term11

is of comparable size or even smaller since it is “KL”-free. The same conclusion can be drawn in the non-realizable12

setting, since in this case, for n larger enough,
√
Ln(Pn) ⋅ KL/n becomes the dominant term in McAllester’s bound13

which, again due to the KL and (*) above, can be larger than our irreducible term. The argument above should also14

answer your question about whether the upper-bound V ′
n ≤ b

2 (or the O(b/
√
n) upper-bound on the irreducible term) is15

too pessimistic—indeed it is as revealed by (*) above. ● Though it may be more interpretable, McAllester’s bound,16

which is the result of the kl analysis of Maurer’s bound (see, e.g., (3) in TS paper), is far from being competitive with17

our bound—in our experiments it performs worse than Catoni’s bound; the bound due to Maurer that we report on in our18

experiments is exactly (2) without any relaxation (see lines 152-153), which is much tighter than McAllester’s—this is19

also why we only reported results for the former. ●We will modify line 22 to reflect your point. ● From (*), one would20

expect m = n/2 to be the optimal choice for the data splitting. However, with the convention that Q(∅) equals some21

prior, say P0, the bound would still be meaningful for m ∈ {0, n}. ● It can be shown that TS’s bound can equivalently22

be written as (constants and log-factors omitted): L(Pn) − Ln(Pn) ≤ max(
√
Vn ⋅ KL/n,KL/n), where Vn is the23

empirical loss variance—the case distinction they consider is merely another way of writing the same inequality. This24

inequality can be relaxed using max(a, b) ≤ a + b,∀a, b > 0, to recover a bound of the form (1). We will explain this25

point in the appendix and point to it in Sec. 2. ● Lines 142-144: Consider the second term in Vn, in the Corollary of26

Thm. 1, involving the sum from j =m + 1 to n; looking inside the square, we see that to predict the data point Zj , the27

estimator ĥ only uses the sample Z≤m and suffers loss `ĥ(Z≤m)(Zj). In contrast, in Thm. 1, one can use the posterior28

Q<j ≡ δ(ĥ(Z<j)) which depends on the extra points Zm+1, . . . , Zj−1 and suffers loss `(ĥ(Z<j), Zj). This loss gets29

closer and closer (as j → n) to the loss that would be incurred by the estimator ĥ(Z≤n) “trained” on the whole sample30

Z≤n. ● In the experiments, m = n/2 and in (5) we considered (p, q) equal to (1,m),(m+ 1, n), and (1, n), to compute31

Q≤m ≡ δ(ĥ(Z≤m)), Q>m ≡ δ(ĥ(Z>m)), and ĥ(Z≤n) (the latter is used for Pn). ● In our experiments the posterior32

Pn is a Gaussian centered at ĥ(Z≤n). So, to see why it is important for ĥ(Z≤m) and ĥ(Z>m) to be close to ĥ(Z≤n),33

consider the extreme case where Pn has zero variance, i.e. Pn ≡ δ(ĥ(Z≤n)). In this case, it is clear from the expression34

of Vn that, if ĥ(Z≤m) = ĥ(Z>m) = ĥ(Z≤n), then Vn = 0. So, when Pn has non-zero but small enough variance, one35

would still expect Vn ≃ 0, when ĥ(Z≤m) ≃ ĥ(Z>m) ≃ ĥ(Z≤n), which can make the first term on the RHS of (1) small.36

@Reviewer 2. Thank you for your feedback on the experiments. ● When running the synthetic experiments, we37

found that the bounds were highly sensitive to one particular parameter—the variance of the Gaussian posterior Pn. For38

this reason, the variance was optimized for every bound separately (see lines 165-167). The sensitivity w.r.t. the Bayes39

Optimal Predictor (BOP) was weak; varying the BOP did not change the relative ranking of the bounds or affect the gap40

between them by much, and so due to space we did not include results for different BOPs. Nevertheless, we will now41

add the cases where the Bayes error is equal to 0.05 and 0.2 for randomly generated BOPs in the appendix. ● In Figure42

1, the Bayes error is 0.1 (the true labels are flipped with probability 1 − 0.9, see line 173); we will make this clearer by43

adding it to the Figure directly. ●We will cite and briefly discuss Rivasplata et al.’s paper in the relevant section.44

@Reviewer 3. Thank you for pointing out Rivasplata et al.’s paper. ● Although their title might suggest otherwise,45

the ideas, techniques, and results of their paper are substantially different from ours. In fact, even though the title of their46

paper mentions “instance-based”, to compute their bound, one needs to know the uniform (worst case over all possible47

samples, not just the observed one) stability for the learning algorithm involved. For many popular algorithms, such as48

gradient descent for example, no non-trivial bound on this worst-case stability parameter is known. In contrast, we can49

get non-trivial bounds for any algorithm as soon as our empirical notion of stability Vn—which can be calculated on50

the data—is small. We will cite Rivasplata et al. and explain this difference in the relevant section. ● The experiments51

in our paper are based on λ-penalized logistic regression, which happens to be an algorithm for which Rivasplata’s52

worst-case stability parameter βn can be calculated after all, giving βn = 1/(λn). We tested Rivasplata’s bound with53

this value of βn, and found that in our experiments it performs worse than the bounds we currently compare ours against54

(i.e. Catoni, Maurer, and TS). For completeness, we will add these additional results with discussion in the appendix.55


