
Loss of performances in Figures 6, 8 (Reviewer #1). After investigation, those losses are due to hyperparameter1

choices for the non-convex WDA and OTDA problems. When appropriately selected for each model (decimation2

factor), we obtain running time gain of same orders without compromising performances. In the final version, we will3

add to the supplementary new figures related to the regularization path computations and resulting accuracies.4

Comparison with other solvers (Reviewers #1 and #3). We have considered experiments with Greenkhorn algo-5

rithm but the implementation in POT library and our custom Python version of Matlab Altschuler’s Greenkhorn code6

were not competitive with Sinkhorn. Hence, for both versions, Screenkhorn is more competitive than Greenkhorn. The7

computation time gain reaches an order of 30 when comparing our method with Greenkhorn while Screenkhorn is8

almost 2 times faster than Sinkhorn,We will provide this comparison and discussion in the final version.9

On the use of constrained L-BFGS (Reviewers #2 and #3). Our proposed screened dual problem given in (3) or10

(6) involves explicit box constraints on eu
sc
i and ev

sc
i (see Proposition 1). Hence, it is a constrained smooth optimization11

problem, and standard Sinkhorn’s alternating minimization can not be applied. This appears more clearly while writing12

its optimality conditions. We resort to L-BFGS-B to solve our constrained convex optimization problem, but any13

efficient solver (e.g. proximal based method or Newton method) can be used. Notice that as for the Sinkhorn algorithm,14

our Screenkhorn can be accelerated using a GPU implementation of L-BFGS-B [2].15

Main concerns of Reviewer #2. Concern 1. The bound in Proposition 3 is similar, up to the additive term ωκ (a16

discussion about ωκ is provided in below), to the ones found in the literature; in particular for the Sinkhorn algorithm17

(see Lemma 2 in [1]) and for the Greenkhorn algorithm (see Corollary 3.3 in [4]). More formally, letting {(uk, vk)}k≥118

denote the iterates returned by the Sinkhorn or the Greenkhorn algorithm, they have Ψ(uk, vk)−Ψ(u?, v?) = O(REk)19

where Ek = ||B(uk, vk)1−µ||1 + ||B(uk, vk)>1− ν||1, and R = Cmax/η+ log(n)− 2 log(cµν) which comes from20

an upper bound for the `∞-norm of the optimal pair solution (u?, v?) of Sinkhorn divergence. In our case, supposing21

that n = m and acknowledging that log(1/K2
min) = 2Cmax/η, we have R = Cmax/η − 3.5 log(cµν). Additionally,22

we give in Proposition 2 a bound on Ek that becomes small as the sample budget increases.23

Concern 2. The new formulation (3) has the form of (κµ, ν/κ)-scaling problem under constraints on the variables24

u and v and the problem is not invariant anymore. This differs significantly from the standard scaling-problems [3],25

though the sought transportation map P takes a matrix-scaling form. We further emphasize that κ plays a key role (that26

we will emphasize in the final version) in our screening strategy for the dual of Sinkhorn divergence. Indeed, without27

κ, eu and ev can have inversely related scale that may lead in, for instance eu being too large and ev being too small,28

situation in which the screening test would apply only to coefficients of eu or ev and not for both of them. In addition29

note that given n, the bounds in Propositions 2 and 3 are derived using the following control of the parameter ε, which30

is induced by the screening test’s construction (4), c1/4µν /
√
n ≤ ε ≤ 1/

√
nKmin.31

Concern 3. An explicit form of ωκ (with ω1 = 0) is given in L449 of the paper. In the setting of n = m and using32

the upper bounds of ||usc||∞ and ||vsc||∞ in L447, we derive the following bound: ωk . R′((1− κ)||µsc||1 + (1−33

κ−1)||νsc||1) where R′ = Cmax/η − 0.5 log(n)− 0.5 log(cµν). A control for the `1-norms of the screened marginals34

µsc and νsc are given in Equations (18) and (19) in Lemma 3. Using the bound of the term ωκ, we will clarify the35

bound in Proposition 3 for the final version of the paper.36

Minor comments (all Reviewers). The final version of the paper will include all suggested modifications.37
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