
We thank the reviewers for constructive comments and unanimous recommendation for acceptance. We address all the1

concerns raised by the reviewers and clarify several points hoping for a more vigorous support for our paper.2

Q1[R2]. Normalization of Laplace operator for directed graphs by left-multiplication by D−1. This is a common3

technique for directed graphs. On an undirected graph, the in-degree and out-degree of a given vertex are the same4

and its adjacency matrix is symmetric. So D−1/2AD−1/2 performs both row-wise and column-wise normalization5

of the adjacency matrix and yields a symmetric normalized Laplace operator as in (Kipf & Welling, 2016), i.e.,6

a′ij = aij/
√
didj , where a′ij is the (i, j) element of the normalized A by the degree of vertices di, dj . However, for a7

directed graph, the adjacency matrix is asymmetric and is usually normalized by in-degree of vertices. It is calculated8

by the left-multiplication of the inverse of in-degree diagonal matrix (D−1A), i.e., a′ij = aij/d
in
i , where din

i =
∑

j aij9

and aij is the weight of the edge from vertex j to vertex i as defined in [1].10

Q2[R2]. Does the proposed method suffer from the vanishing gradient problem? This is a great point. Actually,11

we are aware that the gradient vanishing problem may occur in GTNs as any deep neural networks. However, in our12

experiments, we have not observed any gradient vanishing problem. First, one main cause of the vanishing gradient13

problem in standard CNNs is a sigmoid function. In our framework, GT Layers do not use sigmoid functions to14

construct new meta-paths. Further, since too long meta-paths generally introduce more noise than signals in this paper,15

less than or equal than 3 GT Layers are used as described in L.195- L.196.16

Q3[R2]. Why should the identity matrix (A0 = I) be included for generating meta-paths? As discussed in L.156-17

L.159, the identity matrix in candidate adjacency matrices A allows to learn variable length meta-paths from length18

1 to l + 1 when l GT layers are stacked. Without the identity matrix in A, GTN always generates meta-paths with a19

fixed length of l + 1. This is suboptimal for some applications where both short and long meta-paths are important.20

Further, the length of effective meta-paths varies across datasets. Including the identity matrix to learn variable length21

meta-paths makes GTNs more robust to the choice of hyperparameters (e.g., the number of GT Layers) across datasets.22

Q4[R2]. More discussion about handling heterogeneous graphs. As R2 mentioned, it is possible to handle hetero-23

geneous graphs by associating a set of existing GNNs with different node/edge types. As a related work, we referred24

R-GCN [28] in Introduction that models relational data. This line of works require manual association between GNNs25

(or parameters) and node/edge types with domain knowledge. Including the recent work with a similar technique on26

knowledge graphs [2], we will discuss more related works in the final version.27

Q5[R3, R1]. More comparison with recent baselines and more datasets. To our knowledge, HAN[34] in our28

baselines is the latest and greatest model to deal with heterogeneous graphs. It was published 10 days prior to our29

submission at the WWW 2019. In our paper, we excluded methods that significantly underperform HAN and GAT30

[31]. Heterogeneous graphs often occur in the wild but a few datasets have been studied in the literature for ‘node31

classification’ that we mainly focused on in this work. We have demonstrated the superior performance of our GTN32

against state-of-the-art methods on the three most widely used datasets in the paper. Instead of more experiments on33

rarely used datasets in node classification, one possible direction is to evaluate GTNs for a different task. For example,34

different heterogeneous graph datasets (e.g., Amazon-book, Last-FM, Yelp2018) have been recently studied for link35

prediction as in [2]. We plan to conduct additional experiments on the datasets for link prediction. If accepted, we will36

include additional experiments in the supplementary materials.37

Q6[R3]. Relation with Spatial Transformer Networks (STNs) and originality. We discussed that STNs can be an38

analogous model of GTNs among CNNs for images since both learn transformations of input data spaces. However,39

new concepts on graphs, heterogeneous graphs (multiple input spaces) and meta-paths (composite relations), led to40

substantial development. First, GTNs handle multiple graphs (input spaces) to learn meta-paths. This is quite different41

from STNs which need to handle one input image space at a time. Second, GT layers softly select adjacency matrices42

and perform matrix multiplications to yield new meta-path (composite relation) graphs. This technique unifies multi-hop43

connections of homogeneous and heterogeneous graphs with variable length meta-paths. We believe that the remote44

relationship between GTNs and STNs should not lead to the underestimation of the novelty of our work.45

Q7[R3]. Clearer notations and examples about heterogeneous graphs and meta-paths. R1 liked that our writing46

is ‘clear and good’. We believe that given the complexity of heterogeneous graphs and meta-paths, our notations are47

clear and consistent with other papers. As R3 pointed out, a more gentle introduction of meta-paths and heterogeneous48

graphs with simple examples and illustrations helps readers. We agree that our examples provided in Line 31. and Line49

265. may not be sufficient for some readers. In the final version, we will add some examples with the definition of50

heterogeneous graphs and meta-paths in Section 3.1. Preliminaries.51
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