
We thank the reviewers for their detailed comments. Our primary contribution is developing theoretical insights and a1

practical deep RL algorithm (BEAR) for learning from static, off-policy datasets without interaction. The key idea in2

BEAR is to learn the best policy within the support of the behaviour/data distribution.3

We have revised the text for clarity, evaluated methods on a more complex task (Humanoid-v2) (as requested by4

(R1)), and added two baselines (R3): DQfD (Hester et.al., 2017) (with static data only, as requested by R2) and KL-5

control (KL-c) (c.f., Jacques et.al., 2019). BEAR outperforms all methods on Humanoid-v2, and BEAR outperforms6

DQfD/KL-c on all other benchmark tasks as well (a subset visualized below). We will release code with the final (R1).7

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K

TrainSteps (1 unit = 1000 gradient steps)

0

1000

2000

3000

4000

5000

6000

7000
Humanoid-v2 : Medium-Quality

BCQ

BEAR (ours)

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

100

200

300

400

500

600

700
Humanoid-v2 : Random Data

BCQ

BEAR (ours)

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000
Walker2d-v2: Expert Data

BCQ

BEAR (ours)

Naive-RL

BC

DQfD

KL-c

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500

3000
Hopper-v2 : Medium-Quality

BCQ

BEAR (ours)

Naive-RL

BC

DQfD

KL-c

R2: BEAR is not favourable. BEAR is the only algorithm that achieves competitive performance across all dataset8

compositions. Naive RL fails with optimal data, and BCQ/BC/DQfD/KL-c fail on random data. In practice, most9

logged datasets are between optimal data and random data (”medium quality”), and BEAR outperforms all methods10

(BCQ/BC/DQfD/KL-c/Naive RL), often by a large margin, in this setting (Fig 3, orange line; Figures above).11

R2: arguments from lines 127-138: restricting supports vs distributions; comparison to constraint in BCQ We12

have rewritten the paragraph to clarify the argument. BCQ implicitly constrains the learned policy π(a|s) to be close13

to the behaviour policy β. BEAR, on the other hand, relaxes the constraint to only enforce a support constraint,14

that is π(a|s) has positive density only where the density of the behaviour policy is more than a threshold (i.e.,15

∀a, β(a|s) ≤ ε =⇒ π(a|s) = 0). Πε ⊆ ∆|S| (where ∆ denotes the simplex) is the set of policies, that satisfy this16

support constraint. Our experiments (Fig 3; Figures above) show that this crucial difference allows BEAR to outperform17

prior methods especially when the logged data is suboptimal.18

R2: Results in Sec 4 lack intuition and connection to BEAR Theorem 4.1 shows a trade-off (lines 172-177) between19

propagated error and suboptimality bias due to restricting the backups (α(Π)). In practice, BEAR restricts πφ to20

lie in the support of β. This insight is formally justified in Theorems 4.1 & 4.2 (C(Πε) is bounded). Computing21

distribution-constrained backup exactly by maximizing over π ∈ Πε is intractable in practice. As an approximation, we22

sample Dirac policies in the support of β (Alg 1, Line 5) and perform empirical maximization to compute the backup.23

As the maximization is performed over a narrower set of Dirac policies ({δai} ⊆ Πε), the bound in Theorem 4.1 still24

holds. Empirically, we show this approximation is sufficient to outperform previous methods. This connection is briefly25

described in Appendix C.2. We now include an explanation of this in Section 5.26

R2: How does MMD relate to Πε? Directly using MMD would constrain the learned policy to be similar to the27

behaviour policy in distribution. However, critically, we use a small number of samples to form a sampled MMD28

estimate. In Appendix C.3, we show that sampled MMD computed from a small number of samples has the effect of29

measuring support matching, while allowing the relative density on the support to vary. Hence, by penalizing sampled30

MMD between π and β, we approximately constrain π to Πε. The number of samples used for the sampled MMD31

maps to the threshold ε in Πε. Further, for discrete distributions, Gretton et al. (2012)’s example can be adapted to32

show that sampled MMD with few samples exhibits the desired behavior. We have added this discussion in Section 5.33

R1: Principled methods for support restriction We are glad that the reviewer found using MMD for support34

restriction neat. While this choice is partially justified due to reasons mentioned in Lines 29-32 in this rebuttal, a35

theoretically robust method is an important next step. We have added a discussion of this in Section 5 as future work36

and a (theoretical) limitation of our method.37

R2: conservative estimate using ensembles; why variance? For the practical algorithm, we used a conservative38

estimate of Q, as this mitigates overestimated Q-values and leads to improved performance (c.f., TD3). Theoretically,39

the estimate arises as a high-confidence, lower bound on the true (expected) value via Cantelli’s inequality and was used40

previously with bandits (e.g., CRM, Swaminathan et al. 2015). We have added this intuition and motivation in Sec 5.41

R2: λ combination for target values BCQ introduced the idea of using a soft-min λQmin + (1− λ)Qmax. As also42

reported by BCQ, we find that it performs better than using Qmin for the target. We have clarified this in main text.43

R2, R3: Baselines: We have added two baselines (DQfD and KL-c), and will add additional baselines in the final if the44

reviewer has further suggestions. Note, DQfD assumes optimality of the static data, which can degrade performance45

when used with suboptimal data. DQfD, by default, performs online interaction as well.46


