
We first and foremost thank the reviewers for their valuable time and feedback. We will fix all small comments and1

typos the reviewers note.2

Reviewer #1 asks how our results relate to adaptive gradient methods. As the reviewer notes, adaptive gradient methods3

construct a sequence of linear pre-conditioners to be applied to the stochastic sub-gradient before the update. Our4

results certify that there exists an optimal linear pre-conditioner for quadratically convex constraint sets. As such,5

adaptive gradient methods can be minimax (rate) optimal. In online algorithms, the common practice [4, 5, 6, 7, 2]6

is to measure regret with respect to the “best” post-hoc regularizer (i.e. preconditioner) and fixed predictor; in this7

context, the regret achieved by AdaGrad is a factor
√

2 away from the regret the best post-hoc linear pre-conditioner8

achieves over rectangular domains (and may be
√
d better than standard gradient methods). Our results thus guarantee9

the minimax optimality of AdaGrad in certain settings. We are perhaps a bit imprecise in that we use “best linear10

preconditioner” as a shorthand for what adaptive algorithms may achieve; we will make this more precise. The extent11

to which specific adaptive algorithms find the (optimal) linear pre-conditioner for specific constraint sets remains open.12

Reviewer #1 correctly notes that the quadratic convexity of the constraint set is critical via Proposition 4. In the case13

that Θ is not quadratically convex, one must replace Θ by its quadratic hull when swapping the infimum and supremum,14

resulting in a (potentially) much larger set (e.g. QHull(B1(0, 1)) = B2(0, 1)). We will emphasize this.15

Reviewer #1 asks about the origin and meaning of Corollary 3. It follows from Corollary 2 by lower bounding the16

inequality. To illustrate the corollary, we can observe that when γ is an `q norm with q ∈ [1, 2], the lower and upper17

bounds match up to
√

log d. After the submission of this paper, we derived more precise bounds in the case where18

the γ-ball is not quadratically convex: we obtained matching lower and upper bounds when the gradients live in any19

weighted `q ball i.e. γ(g) = (
∑

j≤d aj |gj |q)1/q for aj > 0 and q ∈ [1,∞]. We will include these new results.20

Reviewer #1 asks for definitional clarifications for minimax risk and regret. While FP is a deterministic function, in21

the definition of the minimax risk, it is applied to θ̂n(Xn
1 ) which is a (random) estimator based on a sample Xn

1 ∼ P ,22

necessitating an expectation. In the definition of MS
n and MR

n, the supremum over the sample space takes place before23

the infimum as the infimum ranges over all (measurable) functions Xn → Θ. This definition accords with the literature24

on lower bounds in convex optimization, where the supremum is over stochastic oracles [1]. Reviewer #2 asks for25

a clarification on the definition of Xn
1 and xn1 . The former corresponds to a collection of n i.i.d. random variables26

(X1, . . . , Xn). The latter denotes n (fixed) vectors (x1, . . . , xn) ∈ Xn. We will clarify all of these definitions.27

Reviewer #2 asks for applicability for the non-convex setting. Empirically, even in non-convex settings, AdaGrad28

tends to outperform vanilla gradient methods when data is sparse (e.g. [3, 8]). Our mathematical results probably do not29

translate as is beyond convexity. However, deriving similar results in the case, for example, of finding stationary points30

of non-convex functions is a natural extension and a very interesting future direction.31

Reviewer #3 asks for concrete examples where the geometry of the constraint sets matters. In addition to the two deep32

learning examples of the above paragraph, this work is, for example, applicable in the broad case of linear models.33

In this setting, the constraint set corresponds to the set of classifiers of interest, and the geometry of the gradients34

corresponds to the geometry of the features (or covariates). For example, in NLP applications, bag-of-word features35

are very sparse by nature, so we seek a dense classifier (i.e. a weight for every word). In the terms of our paper, this36

means that Θ is a weighted `∞ ball, γ is a weighted `1 ball, and our theory suggests adaptive scaling is important. (For37

empirical results, see, e.g. [4].)38
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