
We thank all the reviewers for their detailed and positive reviews on our manuscript. We respond to some of the1

questions and comments below. A further round of polishing has been conducted to improve the quality of the paper.2

1. Motivation and Practical Use Case of the Neighboring Reward Functions3

Motivation. As the motivation of our work is to protect the reward function, the mathematical objective is then to make4

two reward function r and r′ indistinguishable as long as they are ‘close’ to each other. This ‘close’ description should5

be defined rigorously by some discrepancy measure between functions. The `∞-norm we used is general and natural.6

Alternatively, it is also possible to use the distance metric in an RKHS, namely, 〈r, r′〉 /‖r‖H‖r′‖H. But this requires7

an assumption that r ∈ H for some pre-definedH. Hence it is less relevant than the `∞-norm.8

Use case. The practical use case depends on the exact implementation of the reward function. An example in the9

recommendation system: if the system records the clickthrough history of the users and the state s which leads to the10

clickthrough, then the reward function can be simulated by using kernel density estimation over s on these clickthroughs.11

Then, removing one instance of clickthrough incurs a maximum change of a constant to the infinity norm; Another12

example is when the reward function is the average of the utility functions of N users. Removing one user will change13

the infinity norm by at most C1/N , as long as these utility functions are bounded by C1.14

Overall, our notion of privacy and neighborhood is general enough to be applied to a variety of practical problems.15

2. Explanation of Algorithm 116

Adding noise to r(·). Adding the noise directly to r(·) is the input perturbation method to preserve privacy. Namely, if17

we sample g ∈ G(0, σ2K) and replace r(·) in the vanilla deep Q-learning algorithm by r(·) + g(·), then by Proposition18

4 the algorithm is differentially private. However, input perturbation is usually less preferred as it tends to incur a high19

utility loss. We have illustrated in Figure 2 (blue curve) that it underperforms our algorithm significantly.20

Intuition. The intuition behind the algorithm is to add functional noise to Q(·). Line 14-18 are an algorithmic21

implementation of the Gaussian process (under the Sobolev space and kernel in Lemma 6). More intuitively, we22

can regard line 14-18 as generating g ∼ G(0, σ2K). Then, whenever Q(s, ·) is queried (in line 12, 19, and 20),23

Q(s, ·) + g(s) is returned instead. We have revised our manuscript and commented this intuition on the side of the24

algorithm. Therefore the intuition and the discrete implementation will be easier to understand.25

Clarity. We have made the following revisions for clarity: A. In the term C(α, k, L,B) in line 5 of the algorithm, k26

is a free parameter. It is the tail bound u/2 in Lemma 8 that balances the noise level σ and the approximation factor27

δ+J exp(−(2k−8.68
√
βσ)2/2). For clarity, we have added k to line 2 of Algorithm 1 and then discussed the intuition28

k = u/2 before Lemma 8. B. In line 16 of the algorithm, µat and dat are defined in Equation (2), which is in the29

appendix. We moved (2) to above Proposition 9 and modified line 16 to Compute µat and dat according to Equation30

(2). Then sample zat ∼ N (µat, dat);. C. ĝ[B][2] denotes a linked list of tuple (s, z), pre-allocated with size B of31

memory. Whenever a new s is queried, the noise z is calculated in line 16. Then (s, z) is inserted to (already sorted) ĝ32

so that ĝ keeps sorted by s. Finding the position to insert is done by binary search, namely, bisect.bisect in our Python33

implementation. D. We have shortened the proof of Theorem 5 into a proof sketch to save space for the explanations.34

3. Utility Analysis in Proposition 1035

Original proposition without T . The number of iteration rounds T is not involved in our Proposition 10. The reason36

is that Q-learning algorithms are proved to converge in the discrete state settings. Hence, we consider only the optimal37

point that the algorithm will converge to. Denote the optimal points under r and r′ as v∗ and v′, respectively, the utility38

analysis investigates how far this perturbed optimal point v′ will diverge from the original optimal point v∗. Equivalently,39

Proposition 10 can be regarded as analyzing the outputs of the algorithm under r and r′ by letting limT→∞.40

Proposition with T . Rigorously, we show the utility guarantee with the optimization error. Let v̂∗ and v̂′ be the actual41

output of Algorithm 1 under the true reward r and the neighboring reward r′, respectively. By Theorem 1 of Szepesvári’s42

book [Sze10], under the discrete space |S| = n < ∞, γ < 1, and bounded reward function ‖r(s, a)‖∞ ≤ r0, Q-43

learning converges in terms of an exponentially decreasing error 2γT
′
r0/(1 − γ) with respect to the number of44

iteration rounds T ′ = T/B. By the triangle inequality ‖v̂′ − v̂∗‖1 ≤ ‖v′ − v∗‖1 + ‖v̂′ − v′‖1 + ‖v̂∗ − v∗‖1 ≤45

‖v′ − v∗‖1 + 2n · 2γT ′
r0/(1− γ). Therefore, Proposition 10 can be re-written as46

E[
1

n
‖v̂′ − v̂∗‖1] ≤

2
√
2σ√

nπ(1− γ)
+

4γT
′
r0

1− γ
,

where the bound is strictly decreasing with the number of iterations rounds T ′. We believe the confusion by Reviewer47

#3 is due to our omitting of theO(γT ′
) term. As we have revised and added this term back, it should have been clarified.48

References. [Sze10] Szepesvári, Csaba. "Algorithms for reinforcement learning." Synthesis lectures on artificial49

intelligence and machine learning 4, no. 1 (2010): 1-103.50

