
[[ Reviewer 1 ]] Thank you for your feedback. We will definitely release our code along with the camera-ready version1

of the manuscript. � Fitting to training data: The advantage of fitting the meta-model on sampled feature points is2

that the accuracy of the meta-model would not be limited by the size of the training data. However, if the meta-model3

is meant to be optimized w.r.t the feature distribution, then one can fit the feature distribution, say using a GAN or a4

kernel density function, and sample feature points from the estimated distribution to train the meta-model. Fitting the5

meta-model directly on training data will correspond to a 2-layer neural network with Meijer-G function as activation6

functions (see Figure 3). While this is very interesting, it departs from the main objective of the paper and demands a7

separate analysis on generalization performance, so we will add this discussion in the supplementary material. � Loss8

function & regularization: The loss function should be selected based on the application, e.g., if f is a classifier, then9

` should be a cross-entropy loss. The idea of adding a regularization term is also very interesting although it is not10

straightforward. We will investigate using the number of poles and zeros as a penalty term as it is a natural measure of11

the complexity of a G function. We will add a discussion on loss functions and regularization in the final manuscript.12

[[ Reviewer 2 ]] Thank you for your helpful comments and suggestions. � Interpretability of complicated functions:13

As mentioned in lines 75 and 89, different functional forms are deemed interpretable in different applications. Bessel14

functions (and other special functions) are very common in empirical physics and material sciences (e.g. wave and15

field equations are modeled with such functions [3, 4]). (Please also refer to response Significance & applicability for16

Reviewer 3.) The theoretical justification of our framework was provided in Section 3.1, where we have shown that17

— based on the Kolomogorov superposition theorem — our approach can approximate any multivariate continuous18

function. � Complexity tuning: Our algorithm explores the Pareto front of simplicity vs. predictivity systematically19

in two ways: (1) it uses Bayesian optimization to conduct hyper-parameter search by picking the smallest number20

of poles and zeros for the Meijer-G function (i.e., simplest functional form) that best fits the model, and (2) it uses21

polynomial Chebyshev approximations to simplify meta-models with complex functional forms (Algorithm 1). We will22

emphasize this in the final manuscript. � Fitting to training data: Please kindly refer to response Fitting to training23

data for Reviewer 1. � Loss function: Our framework does not pose limitations on the loss function being used: any24

differentiable loss function (e.g., cross-entropy) can be used instead of the L-2 loss in Equation (2). � Convexity:25

In general, optimizing symbolic models with arbitrary non-linearity cannot be formulated as a convex optimization26

problem unless strict prior assumptions on the symbolic functions (e.g., linearity) are made (as in [8, 14]). This is why27

symbolic regression models resort to search algorithms based on genetic programming, which also does not guarantee a28

global solution [23-25]. Moreover, most of the competitive deep learning-based baselines such as DeepLIFT and L2X29

also use gradient descent. A key strength of our framework is that for the first time, flexible symbolic modeling can be30

conducted efficiently via gradient descent rather than exhaustive search heuristics. We believe this to be a strength of our31

method and not a weakness. � Extra references: We will add all the suggested references in the final the manuscript.32

In addition, we have implemented two of the requested baselines and incorpo-
rated the results into Sections 5.1 and 5.2. The two baselines are: the additive
GP by Duvenaud et al. and ANOVA GP by Kaufman et al.. As shown in
the following Table, we found that neither baselines outperformed our model
for experiment 5.2. Our interpretation for these results is that the additive
GP kernel decomposition cannot capture the intricate interactions between
(overlapping) feature subsets learned by the reference XGBoost model.

AUC-ROC

SM 0.8651 ± 0.0045

Additive GP 0.8502 ± 0.0062
ANOVA GP 0.8498 ± 0.0053
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[[ Reviewer 3 ]] Thank you for your valuable comments. � Significance & applicability: As mentioned in lines 66-7634

and Section 4, our method is applicable to the wide range of setups where a model’s feature importance, interactions35

or explicit equations are essential for understanding its instance-wise predictions or uncovering the sources of its36

performance gain. We demonstrated the significance of our algorithm through the exemplary medical application in37

Section 5.2, which entailed explaining the predictions of a complex model for breast cancer, and helped recover new38

feature interactions that were unknown in the clinical literature. We will make sure that these aspects regarding the39

significance of our work are clearly stated in the camera-ready version of the paper. � Empirical evaluation: By40

virtue of the Kolomogorov superposition theorem [28], our algorithm can model any multivariate continuous function41

regardless of its dimensionality and the richness of its internal feature representations. Our algorithm is in fact more42

advantageous for more complex models since gradient descent is more efficient in large parameter spaces compared to43

black-box optimization methods which scale exponentially with the number of parameters. In the final manuscript, we44

will add the AUC-ROC performance of symbolic regression (SR) to Table 3. The run-time of SR on this dataset was 3.545

times longer than our algorithm. The functional form of the equation in line 267 was the same in all 5 runs, and the46

variability of the coefficients across runs was statistically insignificant. We will report the variance of the coefficients47

in line 267 in the supplementary material. � Influence of hyper-parameters: More complex models require more48

poles and zeros (hyper-parameters) for the corresponding meta-model. We tuned the hyper-parameters in Section 5.249

using Bayesian optimization. � Related literature: In the final version of the paper, we will make it clear that our50

framework does not encompass the line of research including LRP, PatternAttribution/Net, DeepTaylor, etc, and will51

point out to the unifying nature of the SHAP framework. � Limits on symbolic expressions: Our approach is not52

limited to additive meta-models: as can be seen in equation (5), our meta-models comprise composite (nested) functions53

of additive functions of the form
∑

j fj(g
j
1(x1) + . . .+ gjn(xn)). By expanding these composite functions (e.g., using54

Taylor’s expansion) we can recover rich multiplicative terms similar to those in the expression trees of genetic models.55


