
We thank the reviewers for their valuable comments and suggestions, and list our responses as follows.1

To Reviewer #1:2

1. The performance results of the stochastic pooling [32] are shown in Table A and will be included in the revised paper.3

2. Eq. 10 is derived through the following variable transformation. Suppose y is a random variable whose probability4

density function is Gaussian, q(y) = 1√
2πσ0

exp{− 1
2σ2

0
(y−µ0)

2}. The target random variable x is obtained via softplus5

transformation by x = softplus(y)⇔ y = softplus−1(x) = log[exp(x)− 1]. Then, we apply the relationship of6

q(y)dy = p(x)dx and dy
dx = exp(x)

exp(x)−1 to provide p(x) = 1√
2πσ0

exp(x)
exp(x)−1 exp{−

1
2σ2

0
(log[exp(x)− 1]−µ0)

2} (Eq.10).7

Such detailed explanation about Eq.10 will be added to the revised paper.8

3. We will clearly describe that this work focuses on local pooling and the method is applied to all the local pooling9

layers in a CNN; e.g., pool1&2 in Table 2a of 13-layer Net.10

To Reviewer #2:11

1. From the viewpoint of the increased number of parameters, we show the effectiveness of the proposed method in12

comparison with the other types of modules that adds the same number of parameters; NiN [LCY14] using 1 × 113

conv, ResNiN which adds an identity path to the NiN module as in ResNet [7], and squeeze-and-excitation (SE)14

module [HSS18]. For fair comparison, they are implemented by using the same 2-layer MLP as ours (Eq.12) of C215

parameters with appropriate activation functions and are embedded before pool1&2 layers in the 13-layer Net (Table16

2a) so as to work on the feature map fed into the max pooling layer; the detailed architecture is shown in the left-bottom17

figure. The performance results are shown in Table B, demonstrating that our method most effectively leverages the18

additional parameters to improve performance. This comparison result will be included in the revised paper.19

2. The approximation in Eq.15 is heuristically determined so as to represent E[η] in a simple analytic form. That is, under20

the condition of σ0 ≤ 1, we manually tune the form and the parameters of the residual term, 0.115σ2
0

4 exp(0.9µ0)
(1+exp(0.9µ0))2

,21

toward minimizing the residual error between softplus(µ0) and
∫
log[1+exp(ε̃)]N (ε̃;µ0, σ0)dε̃ which is empirically22

computed by means of sampling. Then, Eq.16 is presented as the most roughly approximated form for Eq.15 by23

ignoring the above-mentioned residual term which exhibits at most 0.115 residual error. The rough approximation is24

introduced since it is practically useful for fast computation at inference without degrading performance (lines146-150).25

3. In the preliminary experiment, we confirmed that the log-Gaussian makes it almost impossible to train CNNs; due to26

introducing the log-Gaussian module, the training loss is not favorably reduced during the end-to-end learning.27

To Reviewer #3:28

1. As mentioned in lines 174-178, the computation overhead of the proposed method is caused by the GAP+MLP to29

estimate the two parameters of {µ0, σ0} at training and only one µ0 at inference; O(HWC) in GAP andO(C2) in MLP.30

For example, in ResNet-50 which requires 3.86GFLOPs, our method increases the computation by only 0.017GFLOPs.31

2. Table C shows the performance of ResNet-50 on the adversarial attack via FGSM [GSS15] which adds perturbation32

by εsign(∇IL(I, t)) to an input (test) image I according to its label t and the loss function L. Compared to the other33

pooling methods, our method exhibits favorable robustness against the attack while the Mixed pooling endowed with34

stochastic training also works well. This result motivates our future work to further analyze the proposed pooling35

method, especially in terms of stochastic training in the pooling, from this viewpoint of robustness to input perturbations.36

Table A: Performance on ImageNet.
ResNet-50 ResNeXt-50

Method Top-1 Top-5 Top-1 Top-5

Stochastic 25.47 7.87 25.02 7.73

iSP-Gauss 21.37 5.68 20.66 5.60
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Table B: Performance
comparison on Ci-
far100 dataset by 13-
layer Net.
Method Error (%)

NiN 24.49±0.13
ResNiN 24.33±0.16
SE 23.99±0.07

iSP-Gaussian 23.52±0.37

←Module architecture
of the comparison

methods. They utilize
the same 2-layer MLP

as in our method.

Table C: Performance results of ResNet-50 on ImageNet
dataset through adversarial attack by FGSM. ε = 0
means no adversarial attack, producing to the original
results in Table 3c.

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3
Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

skip 23.53 7.00 42.89 14.64 56.58 22.20 66.25 28.73
avg 22.61 6.52 40.35 13.22 53.99 20.13 63.97 26.62
max 22.99 6.71 45.39 15.41 60.93 23.59 71.03 30.64

Mixed 23.32 6.77 37.55 12.11 49.83 17.90 58.99 23.27

DPP 22.52 6.63 42.70 14.02 58.12 21.88 68.77 28.79
Gated 22.27 6.33 41.23 13.29 55.84 20.66 66.41 27.58
GFGP 21.79 5.95 38.11 11.85 50.44 17.70 60.06 23.26

iSP-Gaussian 21.37 5.68 37.42 11.27 50.26 17.52 60.02 23.24
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