We thank the reviewers for their valuable comments and suggestions, and list our responses as follows. 1

- To Reviewer #1: 2
- 1. The performance results of the stochastic pooling [32] are shown in Table A and will be included in the revised paper. 3
- 4
- 5
- **2.** Eq. 10 is derived through the following variable transformation. Suppose y is a random variable whose probability density function is Gaussian, $q(y) = \frac{1}{\sqrt{2\pi\sigma_0}} \exp\{-\frac{1}{2\sigma_0^2}(y-\mu_0)^2\}$. The target random variable x is obtained via softplus transformation by $x = \texttt{softplus}(y) \Leftrightarrow y = \texttt{softplus}^{-1}(x) = \log[\exp(x) 1]$. Then, we apply the relationship of q(y)dy = p(x)dx and $\frac{dy}{dx} = \frac{\exp(x)}{\exp(x)-1}$ to provide $p(x) = \frac{1}{\sqrt{2\pi\sigma_0}} \frac{\exp(x)}{\exp(x)-1} \exp\{-\frac{1}{2\sigma_0^2}(\log[\exp(x) 1] \mu_0)^2\}$ (Eq.10). Such detailed explanation about Eq.10 will be added to the revised paper. 6
- 7
- 8
- 3. We will clearly describe that this work focuses on local pooling and the method is applied to all the local pooling 9
- layers in a CNN; e.g., pool1&2 in Table 2a of 13-layer Net. 10

To Reviewer #2: 11

- 1. From the viewpoint of the increased number of parameters, we show the effectiveness of the proposed method in 12
- comparison with the other types of modules that adds the same number of parameters; NiN [LCY14] using 1×1 13 conv, ResNiN which adds an identity path to the NiN module as in ResNet [7], and squeeze-and-excitation (SE)
- 14 module [HSS18]. For fair comparison, they are implemented by using the same 2-layer MLP as ours (Eq.12) of C^2
- 15 parameters with appropriate activation functions and are embedded before pool1&2 layers in the 13-layer Net (Table 16
- 2a) so as to work on the feature map fed into the *max* pooling layer; the detailed architecture is shown in the left-bottom 17
- figure. The performance results are shown in Table B, demonstrating that our method most effectively leverages the 18
- additional parameters to improve performance. This comparison result will be included in the revised paper. 19
- 2. The approximation in Eq.15 is *heuristically* determined so as to represent $E[\eta]$ in a simple analytic form. That is, under 20
- the condition of $\sigma_0 \leq 1$, we *manually* tune the form and the parameters of the residual term, $0.115\sigma_0^2 \frac{4 \exp(0.9\mu_0)}{(1+\exp(0.9\mu_0))^2}$. 21
- toward minimizing the residual error between $\mathtt{softplus}(\mu_0)$ and $\int \log[1 + \exp(\tilde{\epsilon})] \mathcal{N}(\tilde{\epsilon}; \mu_0, \sigma_0) d\tilde{\epsilon}$ which is empirically 22
- computed by means of sampling. Then, Eq.16 is presented as the most roughly approximated form for Eq.15 by 23
- ignoring the above-mentioned residual term which exhibits at most 0.115 residual error. The rough approximation is 24
- introduced since it is practically useful for fast computation at inference without degrading performance (lines146-150). 25
- 3. In the preliminary experiment, we confirmed that the log-Gaussian makes it almost impossible to train CNNs; due to 26
- introducing the log-Gaussian module, the training loss is not favorably reduced during the end-to-end learning. 27

To Reviewer #3: 28

- 1. As mentioned in lines 174-178, the computation overhead of the proposed method is caused by the GAP+MLP to 29
- estimate the two parameters of $\{\mu_0, \sigma_0\}$ at training and only one μ_0 at inference; O(HWC) in GAP and $O(C^2)$ in MLP. 30
- For example, in ResNet-50 which requires 3.86GFLOPs, our method increases the computation by only 0.017GFLOPs. 31
- 2. Table C shows the performance of ResNet-50 on the adversarial attack via FGSM [GSS15] which adds perturbation 32
- by $esign(\nabla_I \mathcal{L}(I, t))$ to an input (test) image I according to its label t and the loss function \mathcal{L} . Compared to the other 33
- pooling methods, our method exhibits favorable robustness against the attack while the Mixed pooling endowed with 34
- stochastic training also works well. This result motivates our future work to further analyze the proposed pooling 35
- method, especially in terms of stochastic training in the pooling, from this viewpoint of robustness to input perturbations. 36

Ta	ble A: Pe Method Stochastic	Performance ResNet-50 Top-1 Top-5 c 25.47 7.87		on ImageNet. ResNeXt-50 Top-1 Top-5 25.02 7.73		Table B: Performance comparison on Ci- far100 dataset by 13- layer Net.		Table C: Performance results of ResNet-50 on ImageNet dataset through adversarial attack by FGSM. $\epsilon = 0$ means <i>no</i> adversarial attack, producing to the original results in Table 3c.								
	iSP-Gauss	21.37	5.68	20.66	5.60	Method	Error (%)		ε =	= 0	$\epsilon =$	0.1	$\epsilon =$	0.2	$\epsilon =$	0.3
	Laura à	Luswei	-,	$H \times W$	×Č	NiN	$24.49 {\pm} 0.13$	Method	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
ANN T	B conv teLU H × W × C KesNi	3x3 conv ReLU N H × W × C		3x3 conv ReLU SE	Global Avg Pool	ResNiN SE	24.33 ± 0.16 23.99 ± 0.07	skip avg	23.53 22.61	7.00 6.52	42.89 40.35	14.64 13.22	56.58 53.99	22.20 20.13	66.25 63.97	28.73 26.62
			-	$\begin{array}{c} H \times W \times \\ \hline \\ \hline \\ Scale \\ \hline \\ H \times W \times \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	I×1×C I×1×C I×1×C I×1×C ixi conv RetU 1×1×C ixi conv sc ixi conv ixi conv	iSP-Gaussian	$23.52 {\pm} 0.37$	max	22.99	6.71	45.39	15.41	60.93	23.59	71.03	30.64
F	teLU $H \times W \times \frac{C}{2}$	ReLL 1x1 co	$I \times W \times C$					Mixed	23.32	6.77	37.55	12.11	49.83	17.90	58.99	23.27
1x	l conv		nv 2			← Module architecture of the comparison methods. They utilize the same 2-layer MLP as in our method.		DPP	22.52	6.63	42.70	14.02	58.12	21.88	68.77	28.79
16	$H \times W \times C$		$I \times W \times C$					Gated	22.27	6.33	41.23	13.29	55.84	20.66	66.41	27.58
·		$H \times W \times Q$;					GFGP	21.79	5.95	38.11	11.85	50.44	17.70	60.06	23.26
2x2 M	$\frac{\text{nx-Pool, }/2}{\frac{H}{2} \times \frac{W}{2} \times C}$	$\frac{H}{2} \times \frac{W}{2} \times 0$,					iSP-Gaussian	21.37	5.68	37.42	11.27	50.26	17.52	60.02	23.24

References 37

- [LCY14] M. Lin, Q. Chen, and S. Yan. Network in Network. In ICLR, 2014. 38
- [HSS18] J. Hu, L. Shen, and G. Sun. Squeeze-and-Excitation Networks. In CVPR, pp. 7132-7141, 2018. 39
- [GSS15] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples. In ICLR, 2015. 40