
RMSE Time (seconds)

ours (20%) ours (80%) MICE (20%) MICE (80%) MC (20%) MC (80%) ours (learning) ours (prediction) MICE MC

Abalone(1e0) 2.72±.04 2.99±.02 2.71±.07 4.50±.09 2.80±.04 3.39±.07 82 20 43 117
Delta (1e − 4) 1.84±.02 2.61±.05 1.88±.02 3.27±.06 1.91±.02 2.80±.04 53 24 27 126
Insurance(1e3) 5.84±.24 10.1±.43 6.24±.38 13.0±.77 6.14±.28 10.1±.49 40 13 11 20
Elevators(1e − 2) 0.46±.01 0.64±.01 0.44±.01 1.15±.04 0.55±.01 0.83±.01 2105 31 364 994

We thank the reviewers for their valuable feedback. We appreciate they recognize that the paper is “well-written“ and1

“clear” (R#2, R#3, R#4, R#5), whose technical contribution “quality is solid” (R#2), “very good” (R#1, R#5) and2

“non-trivial” (R#3) while it considers “an important problem in ML” (R#3, R#4) which can “be of interest to many3

people at NeurIPS” (R#3). We hope to address all questions and concerns raised in the following.4

[Reviewer #1] 1. Limited impact. We disagree with the reviewer. As also noted by R3 and R4, computing the expected5

predictions of a model lies at the core of ML and statistics. Among the plethora of ML problems that would benefit6

from our algorithm, there are: missing value imputation, feature selection, several formulations of fairness as well as7

computing integral probability metrics, i.e., a fundamental way to assess the distance between distributions (e.g., see8

the popular Wasserstein distance). In this paper, we tackled just the first one in the list to show the effectiveness of9

our algorithm. We are actively working on applying it to the other application scenarios. 2. Toy models. the structural10

properties we require for our circuits do not compromise expressiveness: PSDDs are SOTA density estimators that are11

comparable to MADEs and VAEs on many benchmarks (compare the results in [1] w.r.t. those in [2]) and LCs are able12

to achieve the same accuracy of much more complex neural networks (e.g., Resnets cfr. [3]).13

[Reviewer #2] 1. Results easily follow from literature. Our technical contribution goes beyond the results known in14

the literature of circuits. Classic sum/max problems only require simpler structural properties and they focus on one15

circuit at a time. E.g., sums (marginals) require only decomposability and smoothness, with the addition of determinism16

for max problems (MAP). Here, for expectations, we need to deal with a pair of circuits and we require them to be both17

structured decomposable and to share the same vtree. We agree that computations are simple, i.e., elegant, once the18

aforementioned requirements have been elicited. Eliciting them, however, is definitely non-trivial and has not been19

explored in the literature so far for expectations. Indeed, our work has been made possible only very recently, after20

discriminative circuits satisfying such structural properties have been introduced in [2]. 2. Simple datasets. Statistics21

are reported in the Appendix. Note that our contribution is more theoretical than empirical. As such, our experiments are22

meant to showcase the (theoretically expected) effectiveness of our algorithms when a reasonably accurate generative23

model is available, across different real world datasets. Our circuits are expressive enough to model larger datasets24

(see our answer to R#1.2) and learning them would scale: in many cases it is easier to learn a LC than a neural net25

(e.g., see [3]). 3. Approximate inference alternatives. Whenever we are able to compute expectations exactly for26

regression (Thm 1), we might want to consider approximations only to speed computations. This is however not27

necessary in practice, as our algorithm is very efficient due to caching (see next point). For classification, we resort to28

approximations but, unfortunately, we cannot provide anytime guarantees. We will discuss and cite related works on29

anytime approximations as it is a sensible venue to explore. 4. Run times. We report in the top table the RMSE and the30

avg. time to predict one test sample for regression with 20% and 80% missing values (we will report all results in the31

paper) and compare to Monte Carlo (MC) estimates via 200 samples drawn from the PSDD. Our method is not only32

faster but more accurate than MC (and MICE). Note that the time to learn the regression circuit is easily amortized after33

the prediction of a few samples. 5. Code and figures. We will make the figures and code more accessible.34

[Reviewer #3] Related works. We will add a detailed discussion of previous approaches to computing moments, such35

as Monte Carlo methods (along with experiments; see response R#2.4) and missing value imputation techniques.36

[Reviewer #4] 1. Proofs. We will provide more detailed proofs for Thms 2 & 3. Specifically, we will show in detail37

how we can reduced our case to those whose complexity has been previously derived. 2. Extension. The work in [4]38

avoids computing expectations by distilling a (simple) generative model from a (simple) discriminative model. We take39

another path, which is not a trivial derivation. See also our answer to R#2.1. 3. Negative results. For regression (Thm40

2), the needed structural constraints do not hinder expressiveness. See our answer to R#1.2. For classification (Thm 3),41

we need to resort to approximations (which are still more effective than competitors for missing values). Note that Thm42

3 does not state that there cannot exist a circuit pair with additional structural assumptions enabling exact computations.43

[Reviewer #5] 1. Wrong audience. Our method can be impactful to many ML scenarios (see our answer to R#1.1). As44

R#3 and R#4 recognize, NeurIPS is a sensible venue. 2. Finite data. We exploit a generative model as a proxy to the45

true data distribution. Indeed, we learn it from data, and the better density estimator it is, the more accurate the expected46

predictions will be. We will discuss this in Section 3 along with how to deal with continuous data. 3. Baselines. We47

will add the comparison with MC estimates over samples from the same PSDD (see our answer to R#2.4).48
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