
We thank the reviewers for the detailed comments and suggested improvements.1

Reviewer 1: Estimate of OPT. In all our algorithms, it suffices to know the optimum value up to a constant (say 2).2

Thus if we know a range for the value of OPT, one can perform a binary search. For instance, if we know that it lies in3

the interval (1/n10, n10) (a fairly large range), the search takes O(log n) time. Two early (arbitrarily chosen) examples4

of guessing the optimum in clustering problems are: Clustering to Minimize the Sum of Cluster Diameters (Charikar,5

Panigrahy, 2001), A fast k-means implementation using coresets (Frahling, Sohler, 2005). We will include more details6

about this step in the final version (possibly in the supplement).7

Reviewer 1: Typos. We thank the reviewer for pointing these out. We will correct (2) and (3). As for (1), the number8

of centers needs to be (1 + c)k as opposed to ck. We will correct this in the statements of theorems 1.2 and 1.4. This is9

why the theorems do not subsume theorems 1.1 and 1.3.10

Reviewer 2: Comparison to prior work. We will compare and reference the works suggested by the reviewer.11

Indeed the works cited, as well as other “data reduction” approaches have been crucial to the development of algorithms12

for clustering. As our focus was on adaptive sampling approaches, we had not referred to those works earlier.13

Algorithm of (*) is better than Theorem 1.3: This is indeed the case if “nearly linear time” is the main goal. However,14

note that the algorithm of (*) is based on iteratively reducing the size of the data, and is much more involved to describe.15

Meanwhile, our focus is to show that a simple variant of k-means++ itself achieves similar (though slightly worse16

guarantees). This is analogous to the case of vanilla (without outliers) k-means. Further, the bounds in Theorem 1.417

improve the approximation factor, albeit using more centers.18

Reviewer 2: Analysis of k-center vs k-means. We will highlight at least some of the ideas involved in the k-means19

analysis in the body of the paper. The analysis is much more challenging because in k-means, it is no longer simply a20

matter of “covering” a cluster (i.e., choosing different points in a cluster lead to significantly different objective values21

for the other points). The lemmas in sections A.2 and A.3 of the supplement address this challenge.22

Reviewer 2: Running time analysis. We will add this in the final version. The run time is O(nk), the same as that23

for k-means++, as long as we have an estimate for the optimum value. Guessing that adds an extra logarithmic factor.24

Reviewer 2: Experiments. In the final version (possibly in the supplement), we will add the details about the25

hyperparamters used in the synthetic experiments and in the noise addition step for real data. We will also perform26

experiments on the kdd-cup dataset (using only the numeric features and normalization as suggested in (**)).27

Reviewer 2: Other comments. We will clarify the statements in the second paragraph of the introduction (latter line28

should say that a polynomial time approximation scheme is ruled out). The use of ` is because it is set to (1 + c)k in29

the bi-criteria algorithms.30

Reviewer 3: Comparisons. As discussed above, we will include more comparisons (in both running time and31

approximation factors (a, b, c)) with prior works. A short summary is as follows: if one is only concerned with32

polynomial running times, one can achieve a = c = 1 and b = O(1) (Krishnaswamy, Li, Sandeep, STOC 2018). Using33

iterative “data reduction” approaches (cited above), one can achieve c = 1 while having a = b = O(1), with the O(1)34

term having a trade-off with the running time. Our algorithms (i) avoid such tradeoffs, and (ii) are simple modifications35

of well-studied greedy update procedures.36

Reviewer 3: Lower bounds. The result of Krishnaswamy et al. (above) shows that a = c = 1 and b = O(1) is37

indeed achievable. It is an interesting open question if the constant b is worse for the outlier version of the problem. As38

for our algorithms, there are examples (based on the tight examples for k-means++) that indeed show that our analysis39

is tight. Thus improvements must come from more involved algorithms.40


