
We thank all the reviewers for insightful comments and suggestions.1

Reviewer 1: Thanks for the spot-on comments and for being our champion! We address the two remarks below.2

Remark 1: In the batch setting, optimality in TV class indeed implies optimality in enclosed Sobolev and Holder classes3

as the reviewer pointed out. However it is not true for forecasting due to the dependence of [C ′n]2 in the optimal regret4

rate as in theorem 8. While bounding the regret of ARROWS, we get a ground truth dependent L2 norm term ‖Dθ‖22 in5

equation (20). This enables the adaptive minimaxity for Sobolev and Holder classes. However, a minimax strategy6

whose regret bound contains the term ‖Dθ‖21 in the place of ‖Dθ‖22 in (20) will be optimal for TV class but fails to get7

the correct dependence on [C ′n]2 for the Sobolev class.8

Remark 2: Achieving minimax forecasting in the TV-constrained comparator setting with a polynomial time algorithm is9

an intriguing open question. Our results do not directly apply to that stronger setting. Although some of our techniques10

might be reusable but we believe nontrivial new algorithmic ideas/proof techniques are probably needed. Our work is11

better viewed under the lens of non-stationary sequential stochastic optimization as in Besbes et al [1] with squared12

error loss and noisy gradient feedback.13

Reviewer 2: Thanks for the detailed and insightful review. Please see Remark 2 above on the comparison to the14

TV-constrained comparator setting and detailed responses to other questions.15

Re More general loss functions: Generalization to other convex costs is regarded as a future work. Thanks for the16

suggestion of self-concordant losses. It is a good direction to explore.17

Re Relation to Gaillard and Gerchinovitz[2015]: The regret bound of O(n1/3) in [2] attained by an O(n7/3) runtime18

policy holds for Holder class which features more regular functions than TV class. Their regret bound in theorem 1119

fails to capture the optimal dependence on the Lipschitz constant and hence cannot be used to construct the correct20

lowerbound with precise dependence on all of the problem parameters in our setting.21

Re Boundedness of theta and C2
n term in the lowerbound: If we assume all theta to be bounded by B then we would22

be able to get a better Ω(BCn) bound. For instance we can consider packing functions that alternates Cn/B times23

between 0 and B. This also points to the fact that forecasting is harder than smoothing. However, this boundedness24

constraint implies that we will be focusing only on a smaller subset of all sequences whose TV is bounded by Cn. Of25

course this B in worst case is at most U + Cn where U is the bound on first data point.26

Re Adaptivity to Cn: Adaptivity to unknown variational functionals are usually nontrivial. Contrary to the reviewer’s27

comment, the uniform restarting proposed in [1] is in fact not adaptive. It requires knowing Cn to set the optimal28

restarting intervals. To the best of our knowledge, Zhang et al. 2018 [3] was the first paper that made it adaptive —29

albeit suboptimally in our setting — as
√
Cn to the total variation. Even there, they achieve adaptivity with a very nice30

new idea of connecting to strongly adaptive regret minimizing algorithms.31

That said, the reviewer’s question challenged us to look into the problem further. We are now convinced that with32

a simple tweak in the restart rule, it is possible to transform ARROWS to an anytime algorithm that optimally33

adapts to Cn — the TV of ground truth. Let the expression in LHS of the restart rule be Ĉ. The idea is to34

replace n and Cn in the RHS of restart rule by k and Ĉ respectively. So we restart when Ĉ > σk−1/2. All35

the results can be proved to be true with this almost fully adaptive restart scheme. We do not have space for a36

proof in this short rebuttal, instead we present below but the regret plot with the new restart rule as an empirical37

validation. We will include this update in main paper if accepted. σ if unknown, can be robustly estimated (thanks38

to sparsity of the wavelet coeffs of Bounded Variation functions) using first few observations as mentioned in line 69.39
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Figure 1: Regret plot for function in Fig.2
of main paper with the new restart scheme
that makes ARROWS optimally adaptive to
both n and Cn.

40

Reviewer 3: Thanks for appreciating our contributions!41
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