- We thank all the reviewers for insightful comments and suggestions.
- **Reviewer 1:** Thanks for the spot-on comments and for being our champion! We address the two remarks below.
- Remark 1: In the batch setting, optimality in TV class indeed implies optimality in enclosed Sobolev and Holder classes
- as the reviewer pointed out. However it is not true for forecasting due to the dependence of $[C'_n]^2$ in the optimal regret
- rate as in theorem 8. While bounding the regret of ARROWS, we get a ground truth dependent L2 norm term $\|D\theta\|_2^2$ in
- equation (20). This enables the adaptive minimaxity for Sobolev and Holder classes. However, a minimax strategy
- whose regret bound contains the term $\|D\theta\|_1^2$ in the place of $\|D\theta\|_2^2$ in (20) will be optimal for TV class but fails to get
- the correct dependence on $[C'_n]^2$ for the Sobolev class.
- Remark 2: Achieving minimax forecasting in the TV-constrained comparator setting with a polynomial time algorithm is
- an intriguing open question. Our results do not directly apply to that stronger setting. Although some of our techniques 10
 - might be reusable but we believe nontrivial new algorithmic ideas/proof techniques are probably needed. Our work is
- better viewed under the lens of non-stationary sequential stochastic optimization as in Besbes et al [1] with squared 12
- error loss and noisy gradient feedback. 13

3

11

- Reviewer 2: Thanks for the detailed and insightful review. Please see Remark 2 above on the comparison to the 14
- TV-constrained comparator setting and detailed responses to other questions. 15
- Re More general loss functions: Generalization to other convex costs is regarded as a future work. Thanks for the 16
- suggestion of self-concordant losses. It is a good direction to explore. 17
- Re Relation to Gaillard and Gerchinovitz[2015]: The regret bound of $O(n^{1/3})$ in [2] attained by an $O(n^{7/3})$ runtime 18
- policy holds for Holder class which features more regular functions than TV class. Their regret bound in theorem 11 19
- fails to capture the optimal dependence on the Lipschitz constant and hence cannot be used to construct the correct 20
- lowerbound with precise dependence on all of the problem parameters in our setting. 21
- Re Boundedness of theta and C_n^2 term in the lowerbound: If we assume all theta to be bounded by B then we would be able to get a better $\Omega(BC_n)$ bound. For instance we can consider packing functions that alternates C_n/B times 22
- 23
- between 0 and B. This also points to the fact that forecasting is harder than smoothing. However, this boundedness 24
- constraint implies that we will be focusing only on a smaller subset of all sequences whose TV is bounded by C_n . Of 25
- course this B in worst case is at most $U + C_n$ where U is the bound on first data point. 26
- Re Adaptivity to C_n : Adaptivity to unknown variational functionals are usually nontrivial. Contrary to the reviewer's 27
- comment, the uniform restarting proposed in [1] is in fact not adaptive. It requires knowing C_n to set the optimal 28
- restarting intervals. To the best of our knowledge, Zhang et al. 2018 [3] was the first paper that made it adaptive —
- albeit suboptimally in our setting as $\sqrt{C_n}$ to the total variation. Even there, they achieve adaptivity with a very nice
- new idea of connecting to strongly adaptive regret minimizing algorithms. 31
- That said, the reviewer's question challenged us to look into the problem further. We are now convinced that with 32
- a simple tweak in the restart rule, it is possible to transform ARROWS to an anytime algorithm that optimally 33
- adapts to C_n the TV of ground truth. Let the expression in LHS of the restart rule be \hat{C} . The idea is to 34
- replace n and C_n in the RHS of restart rule by k and \hat{C} respectively. So we restart when $\hat{C} > \sigma k^{-1/2}$. All 35
- the results can be proved to be true with this almost fully adaptive restart scheme. We do not have space for a 36
- proof in this short rebuttal, instead we present below but the regret plot with the new restart rule as an empirical 37
 - validation. We will include this update in main paper if accepted. σ if unknown, can be robustly estimated (thanks
 - to sparsity of the wavelet coeffs of Bounded Variation functions) using first few observations as mentioned in line 69.
- **Reviewer 3:** Thanks for appreciating our contributions!

42 References:

38

39 40

- [1] Besbes et al. Non-stationary stochastic optimization, In Operations 43
- Research 2015.
- [2] Gaillard et al. A chaining algorithm for online nonparametric regres-45
- sion. In COLT 2015.
- [3] Zhang et al. Dynamic Regret of Strongly Adaptive Methods, In ICML
- 2018. 48

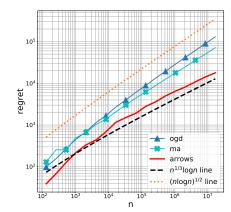


Figure 1: Regret plot for function in Fig.2 of main paper with the new restart scheme that makes ARROWS optimally adaptive to both n and C_n .