
We appreciate all reviewers for their helpful and constructive comments. We’ll further improve the paper in the final1

version. Below we address their detailed comments.2

R1: RGF outperforms NES: The major difference between RGF and NES [16] is that NES adopts the antithetic3

sampling, while RGF does not. Specifically, the gradient estimator is ĝ = 1
q

∑q
i=1

f(x+σui,y)−f(x−σui,y)
2σ ui in NES and4

ĝ = 1
q

∑q
i=1

f(x+σui,y)−f(x,y)
σ ui in RGF (see Eq.(5)). The NES estimator can eliminate the second-order component5

of f through central differences, but it requires 2q queries while RGF only requires q + 1 queries. When σ is small, the6

second-order component is often dominated by the first-order one. So RGF outperforms NES. We’ll make it clearer.7

0 50 100
Attack iteration

0.2

0.4

A
ve

ra
ge
λ
∗

Figure A: The average λ∗ across
attack iterations.

0 50 100
Attack iteration

0.010

0.015

0.020

0.025

C
os

in
e

si
m

ila
ri

ty

Transfer gradient

Estimated gradient

Figure B: The cosine similarity
across attack iterations.

0 10 20 30 40 50
S

0.1

0.2

0.3

0.4

0.5

0.6

E
st

im
at

io
n

er
ro

r

Figure C: The estimation error
with different S.

R1: λ∗ distribution and cosine similar-8

ity across the attack iterations: Thanks9

for the suggestion. As it’s hard to plot10

the full distribution of λ∗, which changes11

during iteration, we show the average λ∗12

over all images w.r.t. iterations in Fig. A.13

It shows that λ∗ decreases along with the14

iterations (i.e., the distribution concen-15

trates on small λ∗). Fig. B shows the cosine similarity between the transfer and the true gradients, and that between the16

estimated and the true gradients, across iterations. The results show that the transfer gradient is useful at beginning, and17

becomes less useful along with the iterations. However, the estimated gradient can remain higher cosine similarity with18

the true gradient, which facilitates the adversarial attacks consequently. We’ll add the results in the final version.19

R2: Novelty of the idea: As stated in L108-113, we consider the score-based setting while [4] focuses on the decision-20

based setting. [4] is built upon the Boundary method [3] and uses a fixed coefficient to incorporate the transfer gradient.21

Due to the different settings, we introduce a new objective (see Eq.(7)) for gradient estimation, and optimize it inside22

the proposed family of estimators, resulting in a generic P-RGF algorithm which incorporates the transfer gradient with23

an optimal coefficient. Technically, it’s non-trivial to derive the optimal solution. Moreover, we found that it’s necessary24

to use an adaptive coefficient rather than a fixed value since 1) the usefulness of the transfer gradient varies across25

iterations; 2) experiments show that our algorithm is beneficial from the adaptive coefficient. Overall, we propose a26

simple, yet novel and effective method, considering a different black-box setting from [4], as agreed by R1 and R3.27
Table A: Additional experimental results.

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q ASR AVG. Q ASR AVG. Q

P-RGF (λ = 0.05) 97.8% 1021 99.7% 888 99.6% 790
P-RGF (λ∗, true norm) 98.1% 768 99.8% 501 99.5% 427
P-RGF (λ∗) 98.1% 745 99.8% 521 99.6% 452

R2: More analysis and experiments about the estima-28

tion of gradient norm: Thanks for the comment. The29

gradient norm (or cosine similarity) is easier to estimate30

than the true gradient since it’s a scalar value. Fig. C shows31

the estimation error of the gradient norm, defined as the (normalized) RMSE—

√
E(

̂‖∇f(x)‖2−‖∇f(x)‖2
‖∇f(x)‖2 )2, w.r.t. the32

number of queries S. We chose S = 10 in all experiments to reduce the number of queries while the estimation error is33

acceptable. We also show the overall attack results of using the true gradient norm instead of the estimated norm in34

Table A (Row 2). The results are similar to those of using the estimated norm. We’ll add the results in the final version.35

R2: Experiments about P-RGF with a fixed λ = 0.05: Thanks for the suggestion. Table A (Row 1) shows the results36

of P-RGF with λ = 0.05 (optimal in Fig. 1(b)), which are better than P-RGF with λ = 0.5 (in Table 1). However, a37

significant performance gap still remains from using the adaptive λ∗. We’ll add the results in the final version.38

R3: The improvement over the RGF method is not significant: In Table A, P-RGF and RGF obtain similar attack39

success rates. The reason is that the maximum number of queries (i.e., 10,000) is sufficient for them to find adversarial40

perturbations, such that their attack success rates are similarly high. However, P-RGF requires fewer queries than RGF41

(20% ∼ 45% queries reduction). If the maximum number of queries is set to 1,000, the attack success rate against42

Inception-v3 becomes 56.4% using RGF and 78.6% using P-RGF (the average number of queries is 470 and 29743

respectively). Moreover, in Table 2, P-RGF obtains much higher success rates than RGF, and also reduces the query44

complexity for attacking the defensive models. In summary, the improvement is significant in most of the cases.45

Table B: Attack results on adversar-
ially trained model.

ASR AVG. Q
RGF 31.7% 1207
P-RGF (λ∗) 64.7% 378

R3: Attack results on adversarially trained defensive models: Thanks for the sug-46

gestion. We choose [*1] as our target model, which successfully performs PGD-based47

adversarial training on ImageNet. The gradient from ResNet-152 can hardly transfer to48

this model, and the results of RGF and P-RGF are similar. So we use another adversarially49

trained model (with a different architecture) to provide the transfer gradient. We perform `∞ attacks with ε = 16/255,50

which is the same threat model used in adversarial training. Table B presents the results—P-RGF outperforms RGF51

significantly with the strong transfer-based prior. We’ll add the results in the final version.52

[*1] C. Xie, Y. Wu, L. van der Maaten, et al. Feature denoising for improving adversarial robustness. CVPR 2019.53


