- We would like to thank the reviewers for their detailed and insightful comments. 1
- [Performance of SGD and robustness of optimization algorithms.] We have resolved the concerns with SGD. By 2
- increasing the batch size towards the last iterations and averaging the last iterates, SGD on the adaptive Gaussian sketch 3
- problem performs better in terms of time vs accuracy performance, compared to SGD on problem (1) or on the oblivious 4
- Gaussian sketch problem. We have similar results with Adam. As reported in the submission, SVRG on the adaptive 5
- Gaussian sketch performs better than SVRG on problem (1), and is robust to the choice of hyperparameters. Further, 6
- Sub-sampled Newton (with mini-batch Hessian and full-batch gradient) has a strong time vs accuracy performance on 7
- adaptive Gaussian sketch. In the revised version, we will include our new results for SGD and Adam, and a sensitivity 8
- analysis to sketching, batch and step sizes, for all algorithms applied to the sketched problems (adaptive and oblivious). 9
- [Comparison with other sketching baselines.] We carried out extensive numerical evaluations of oblivious Gaussian 10
- sketching and adaptive sketching with uniform column sub-sampling matrix (Nystrom method) on MNIST and CIFAR10. 11
- For a wide range of values of sketching size m and regularization parameter λ , adaptive Gaussian sketching always 12
- strongly beats oblivious sketching, and, outperforms Nystrom method, both in terms of final test accuracy (see Table 1 13
- below), and, time vs accuracy performance for the following algorithms: SGD, SVRG, Sub-sampled Newton and Adam. 14 Further, adaptive Gaussian sketching matches the performance of x^* for relatively small values of m. We will include 15 all these results in the revised version. [Computational issues with $(S^{\top}S)^{-\frac{1}{2}}$ for large m.] Thanks to this question, Table 1: Test classification error on MNIST and CIFAR10, for 10-classes classification. "AG": Adaptive Gaussian

sketch, "Ob": Oblivious Gaussian sketch, "N": Nystrom method, x_m : solution obtained from problem (2) with sketching size m. We mapped MNIST (resp. CIFAR10) images through 10000 (resp. 60000) random cosines.

λ	x^*_{MNIST}	x_{256}^{AG}	x_{1024}^{AG}	x_{256}^{Ob}	x_{1024}^{Ob}	x_{256}^{N}	x_{1024}^{N}	x^*_{CIFAR}	x_{256}^{AG}	x_{1024}^{AG}	x_{1024}^{Ob}	x_{256}^{N}	x_{1024}^{N}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.6 %	4.0 %	4.5 %	25.2 %	8.5%	5.0 %	4.6 %	51.6 %	50.6%	51.0%	70.5%	55.8%	53.1%
	2.5%	2.8%	2.4%	30.1%	9.4%	3.0%	2.7%	47.6%	51.9%	45.8%	80.1%	57.2%	55.8%

16

we have improved our results and we can show that the matrix $(S^{\top}S)^{-\frac{1}{2}}$ can be replaced by any other pre-conditioner 17

Q, and in particular, for large m, a matrix Q obtained by approximate SVD. Provided $||Q - (S^{\top}S)^{-\frac{1}{2}}||_2$ is small, then 18

the condition number of (7) remains close to that of (1). Importantly, it does not affect any of the bounds on \tilde{x} . We will 19

include these results in the revised version. 20

[For small m, would dynamically modifying the sketching matrix lead to tighter bounds?] For small m, we tried 21 numerically to refresh the sketching matrix at each iteration and it did not yield good results. However, our Algorithm 2 22 refreshes the sketching matrix at the end of each optimization, and gives tighter bounds. 23

[Results on CIFAR10 far from state-of-the-art. Other optimization problems for which the method could be 24

demonstrated?] We did additional experiments with features extracted from a pre-trained neural network, and \tilde{x} 25

matched exactly the test error of x^* (~ 10%). We will include these results in the final version. Beyond classification, 26

large-scale generalized linear models (other than least squares) can be addressed with our method. 27

[Unclear if SGD (without sketching) converges to the same solution or performs better]. The reported results 28 correspond to the best SGD solution we obtained (with grid search of the batch and step sizes), even through longer 29 time horizons. 30

[Value of λ used for synthetic experiments?] We used $\lambda = 10^{-4}$. Thank you for pointing this out, we will fix it. 31

[Title suggestion.] We agree with the relevant title suggestion. [Non-convexity]. We derived a new result regarding 32 non-convex, smooth functions f: if α^* is a nearly-stationary point for the sketched problem (2), then \tilde{x} is a nearly 33 ε -stationary point for problem (1), where ε controlled again by the tail spectral decay of A. [Regularity assumptions 34 on f]. We will add some discussion in the main body of the paper. In Appendix E, guarantees are provided for convex, 35 non-smooth objectives f. [Other regularizers.] We have extended our analysis to smooth, strongly convex regularizers. 36

However, extension to the L_1 -norm is an open question. 37

[Invoking the representer theorem not necessary in Eq. (11).][Notation 5.10^{-5} non-standard.] We will simplify 38 the argument for Eq. (11) in the revised version, and correct the notation. Thank you for pointing this out. 39

[Intuition for why the proposed approach works.] We will discuss more carefully some intuition in the revised 40

version. In a nutshell, the kernelized version of optimization problem (1) is well approximated by $\min_w f(AP_SA^\top w) + \lambda \|P_SA^\top w\|^2$, provided that $AA^\top \approx AP_SA^\top$. Adaptive sketching works better than oblivious one, since $\|AA^\top - AP_{A^\top \tilde{S}}A^\top\|_2 \ll \|AA^\top - AP_{\tilde{S}}A^\top\|_2$, for \tilde{S} i.i.d. Gaussian. 41 42

43

[Comparison of the proposed method with approximate kernel methods] Random Fourier features lead to problems 44

of type (1). Standard Nystrom methods approximates the matrix K in (11). But both problems (1) and (11) are typically 45

high-dimensional. Our method is a dimension-reduction tool, that can be used on top of approximate kernel methods. 46