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[Performance of SGD and robustness of optimization algorithms.] We have resolved the concerns with SGD. By2

increasing the batch size towards the last iterations and averaging the last iterates, SGD on the adaptive Gaussian sketch3

problem performs better in terms of time vs accuracy performance, compared to SGD on problem (1) or on the oblivious4

Gaussian sketch problem. We have similar results with Adam. As reported in the submission, SVRG on the adaptive5

Gaussian sketch performs better than SVRG on problem (1), and is robust to the choice of hyperparameters. Further,6

Sub-sampled Newton (with mini-batch Hessian and full-batch gradient) has a strong time vs accuracy performance on7

adaptive Gaussian sketch. In the revised version, we will include our new results for SGD and Adam, and a sensitivity8

analysis to sketching, batch and step sizes, for all algorithms applied to the sketched problems (adaptive and oblivious).9

[Comparison with other sketching baselines.] We carried out extensive numerical evaluations of oblivious Gaussian10

sketching and adaptive sketching with uniform column sub-sampling matrix (Nystrom method) on MNIST and CIFAR10.11

For a wide range of values of sketching size m and regularization parameter λ, adaptive Gaussian sketching always12

strongly beats oblivious sketching, and, outperforms Nystrom method, both in terms of final test accuracy (see Table 113

below), and, time vs accuracy performance for the following algorithms: SGD, SVRG, Sub-sampled Newton and Adam.14

Further, adaptive Gaussian sketching matches the performance of x∗ for relatively small values of m. We will include15

all these results in the revised version. [Computational issues with (S>S)−
1
2 for large m.] Thanks to this question,

Table 1: Test classification error on MNIST and CIFAR10, for 10-classes classification. "AG": Adaptive Gaussian
sketch, "Ob": Oblivious Gaussian sketch, "N": Nystrom method, xm: solution obtained from problem (2) with sketching
size m. We mapped MNIST (resp. CIFAR10) images through 10000 (resp. 60000) random cosines.

λ x∗MNIST xAG
256 xAG

1024 xOb
256 xOb

1024 xN
256 xN

1024 x∗CIFAR xAG
256 xAG

1024 xOb
1024 xN

256 xN
1024

5 · 10−5 4.6 % 4.0 % 4.5 % 25.2 % 8.5% 5.0 % 4.6 % 51.6 % 50.6% 51.0% 70.5% 55.8% 53.1%
5 · 10−6 2.5% 2.8% 2.4% 30.1% 9.4% 3.0% 2.7% 47.6% 51.9% 45.8% 80.1% 57.2% 55.8%

16

we have improved our results and we can show that the matrix (S>S)−
1
2 can be replaced by any other pre-conditioner17

Q, and in particular, for large m, a matrix Q obtained by approximate SVD. Provided ‖Q− (S>S)−
1
2 ‖2 is small, then18

the condition number of (7) remains close to that of (1). Importantly, it does not affect any of the bounds on x̃. We will19

include these results in the revised version.20

[For small m, would dynamically modifying the sketching matrix lead to tighter bounds?] For small m, we tried21

numerically to refresh the sketching matrix at each iteration and it did not yield good results. However, our Algorithm 222

refreshes the sketching matrix at the end of each optimization, and gives tighter bounds.23

[Results on CIFAR10 far from state-of-the-art. Other optimization problems for which the method could be24

demonstrated?] We did additional experiments with features extracted from a pre-trained neural network, and x̃25

matched exactly the test error of x∗ (∼ 10%). We will include these results in the final version. Beyond classification,26

large-scale generalized linear models (other than least squares) can be addressed with our method.27

[Unclear if SGD (without sketching) converges to the same solution or performs better]. The reported results28

correspond to the best SGD solution we obtained (with grid search of the batch and step sizes), even through longer29

time horizons.30

[Value of λ used for synthetic experiments?] We used λ = 10−4. Thank you for pointing this out, we will fix it.31

[Title suggestion.] We agree with the relevant title suggestion. [Non-convexity]. We derived a new result regarding32

non-convex, smooth functions f : if α∗ is a nearly-stationary point for the sketched problem (2), then x̃ is a nearly33

ε-stationary point for problem (1), where ε controlled again by the tail spectral decay of A. [Regularity assumptions34

on f ]. We will add some discussion in the main body of the paper. In Appendix E, guarantees are provided for convex,35

non-smooth objectives f . [Other regularizers.] We have extended our analysis to smooth, strongly convex regularizers.36

However, extension to the L1-norm is an open question.37

[Invoking the representer theorem not necessary in Eq. (11).][Notation 5.10−5 non-standard.] We will simplify38

the argument for Eq. (11) in the revised version, and correct the notation. Thank you for pointing this out.39

[Intuition for why the proposed approach works.] We will discuss more carefully some intuition in the revised40

version. In a nutshell, the kernelized version of optimization problem (1) is well approximated by minw f(APSA
>w)+41

λ‖PSA>w‖2, provided that AA> ≈ APSA
>. Adaptive sketching works better than oblivious one, since ‖AA>−42

APA>S̃A
>‖2 � ‖AA>−APS̃A

>‖2, for S̃ i.i.d. Gaussian.43

[Comparison of the proposed method with approximate kernel methods] Random Fourier features lead to problems44

of type (1). Standard Nystrom methods approximates the matrix K in (11). But both problems (1) and (11) are typically45

high-dimensional. Our method is a dimension-reduction tool, that can be used on top of approximate kernel methods.46


