
We thank the reviewers for the detailed comments. We note that reviewers 2 and 3 think highly of the quality of the1

paper. If our responses have addressed your concerns, we hope that you would give an accept recommendation.2

Reviewer 23

1. Presentation of gapBoost: Thank you for the suggestion. We will re-organize Section 3.4

2. Nonlinear extension: our analysis can be extended to (nonlinear) kernel models based on a reproducing kernel5

Hilbert space. The theoretical analysis of general nonlinear models (e.g., deep nets) is challenging since their loss6

landscape is usually non-convex. However, motivated by the empirical success of convex optimization methods for7

fitting complex deep nets, we hypothesize that we could still leverage the intuition behind our gap minimization8

principle to create novel deep transfer methods. In future work, we plan to empirically verify this conjecture.9

3. In Section 3.5 of Appendix, we have shown that the Y-discrepancy can be bounded from training data by10

constructing a classification problem, which may be used as a guideline to select parameters in a principled way. We11

choose ρT = 0 as it corresponds to no punishment for the target data (the simplest setting). We have run additional12

experiments by varying both parameters. In Fig. 1, we can observe that by properly choosing both parameters (e.g.,13

ρT = log 2, ρS = 0), we may obtain even better results. As you point out, we could use a simple heuristic like choosing14

a relatively larger ρS when target data is small in order to leverage source data, as shown in Fig. 1(a). As the target data15

increase, the results are less sensitive to the parameter. As long as ρT > ρS , the performance of gapBoost is stable16

over a wide range of values of parameters, as shown in Fig. 1(b)–1(d). In Fig. 1 in the paper, we fixed ρT = 0 and17

ρS = log 1
2 . This will be made more explicit in the revised version.18

4. There are various measures for unlabeled data proposed in the literature (see the references in Line 57), which19

could be incorporated into our work. The notion of discrepancy [25] (the unsupervised version of Y-discrepancy) is20

particularly relevant, due to its consistency with the notion used in our paper. We will also be working on generalizing21

the notion of gap to the unsupervised learning (domain adaptation) setting.22

Reviewer 323

Thank you for your comments and pointing out the reference. We will add a qualitative comparison in our paper. Please24

note that the current baselines methods are all boosting-based approaches in order to make a fair comparison.25

Reviewer 426

1. Vacuous bound: The inequality ||Γ||2 ≤
√
N ||Γ||∞ is tight when we assign equal weights to all data points. Since Γ27

is a probability simplex, we have ||Γ||2 = 1√
N

and ||Γ||∞ = 1
N . Then, after simplifying the multiplicative term28

√
N , εΓ has a fast convergence rate of O( 1√

N
) in this case, which motivates Rule 2. In fact, we recover the learning29

bound of assigning equal weights on source and target instances [3] (i.e., pooling-task approach). See also Remark 3 for30

more discussions.31

2. Moving parts: Thank you for noting that the trade-off between the multiple terms is intuitively reasonable, which32

motivates the proposed rules.33

3. Line 182: As you correctly point out, the bound is controlled by the discrepancy—it is also shown in the last term34

of (2), which indeed motivates Rule 3. The convergence rate is in fact the convergence rate of εΓ. We will clarify this35

point in the revised version.36

4. Tools are straightforward ... largely inspired by [20]: While the tools are commonly used, we extend the existing37

theoretical results in the following ways. First, we propose the novel notion of performance gap, revealing a new38

principle for transfer learning. Second, we extend existing tools to their “weighted” version (e.g., weighted Rademacher39

complexity/uniform stability/Hoeffding’s inequality, see Appendix for details). Third, we develop the bounds for40

Y-discrepancy in the supervised learning context (the notion of discrepancy in [3], [25] is designed in the unsupervised41

learning context). We also show that for 0-1 loss, the empirical Y-discrepancy can be computed by constructing a42

new classification problem. See Section 3.5 of Appendix for more details. Finally, we only use [20] to derive the43

Rademacher bound after we have obtained the stability bound, and we extend it to our weighting setting.44
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Figure 1: Test error rates (%) with varying ρS and ρT . The valley curves are obtained by setting ρT = 0 (i.e., the
purple curves in Fig. 2 of main paper). Hence the areas below the curve indicate better parameter configurations.


