
We thank the reviewers for their thoughtful feedback, and note the apparent consensus that our contribution, Sibling1

Rivalry (SR), is interesting and novel. We would like to emphasize that, as several reviewers have observed, SR2

is simple to implement and apply, works across a variety of settings, and learns from generic distance-based3

shaped rewards that do not rely on domain-expertise. To make SR a valuable resource for the research community,4

we will release an open-source implementation that shows SR is light-weight (∼ 50 lines of added code).5

Revisions We will fix all writing issues and revise the title and notation. We will clarify how trajectories are selected6

for gradient computation and that results with only sparse rewards are omitted because they all fail in our setting.7

Intuition (R1, R2) Reward shaping presents significant challenges for on-policy learning of goal-conditioned policies,8

as such methods often converge to sub-optimal policies [Williams 1992]. Such “local optima” are, e.g., low-entropy9

policies that fail to reach goal-states and get stuck in regions away from the goal. Manual reward shaping can prevent10

such outcomes, but is often domain-specific, ad-hoc, and challenging. Instead, SR uses pairs of rollouts to automatically11

estimate when policies get stuck in local optima and prevents the policy’s terminal-state distribution ρπg (sT ) from12

collapsing around the associated regions of state space. In effect, this gives a dynamic way to encourage exploration13

away from local optima while continuing to guide ρπg (sT ) towards the goal g. In addition, the SR reward function14

converges to the sparse reward as the policy learns to reach the task-goal states, preserving the underlying task definition.15

Assumptions The key requirements for applying SR are (1) that goal completion can be expressed via a distance16

metric and (2) that the distance metric and control over episode start state/goal are available during learning. In17

simulated environments, this availability should exist. We will clarify these requirements and how they are met in18

our experiments. In real-world environments, it may be impossible to sample sibling rollouts according to their exact19

definition; we consider sensitivity to noise in the sampling conditions as a direction for future research.20

We will include the above and clarify the existing exposition in the paper, with particular attention to improving21

the presented motivation. Similarly, we will discuss challenges more clearly, such as sensitivity to ε in the U-maze22

(below).23

Additional Experiments (R1, R2) We have performed the suggested Corridor and U-shaped maze experiments: the24

results strengthen the intuition above and reaffirm the effectiveness of SR. We will add the results to the Appendix. SR25

solves the Corridor task easily at all lengths tested (from length 5 to 25) and handles the U-maze task well for the26

ranges tested (total maze length from 7 to 31). In comparison, both ICM and HER fail to solve the longer versions27

of the tasks. In the most extreme U-maze case, the local optimum is on average ∼ 1.5 distance units from the goal but28

successful navigation requires first moving roughly 10× that distance away from the goal. In this case, the range of29

inclusion hyperparameter (ε) values that produce good results with SR are limited (0.2 ≤ ε ≤ 0.8). Due to the limited30

rebuttal period, we are unable to report all suggested baseline comparisons here but will include them in the paper.31

R1 ...not fully clear...long narrow corridor...U-shape should fail... Thank you for the insightful suggestion, we hope32

the above results clarify the robustness of SR. We observed that the two distance terms in the SR reward do not cancel33

out (see the Corridor results); rather, it is more helpful to think of their distinct effects on the distribution of terminal34

states ρπg (sT ). The distance-to-goal reward draws ρπg (sT ) towards g while the distance-to-sibling reward prevents the35

former reward from collapsing ρπg (sT ) around hurtful optima.36

...different global optimum...shaped reward baseline weak... Because we only supply shaped rewards at the terminal37

timestep, the concern about the naive shaped rewards being a weak baseline does not apply. Nevertheless, we will38

clarify that providing the absolute distance values as reward at each timestep may distort the global optimum.39

R2 ...the difference between V (s, g) and d(s, g)...how bad a distance can be... The experiments described above40

clarify how the quality of the distance function impacts SR. Note that local optima hinder learning even with “good”41

distance functions, as shown in our bit-flipping and Minecraft experiments.42

...any-state-to-any-state problem... We avoid the any-state-to-any-state version of the goal-conditioned RL problem in43

order to address the realistic scenario where task-relevant goals only occupy a small portion of the state space.44

R3 Sample complexity We will plot results in terms of sampled timesteps rather than episodes. The number of episodes45

provides an upper bound on the number of timesteps (#timesteps ≤ #episodes * MaxEpisodeLength). Hence,46

plotting results in terms of timesteps will shift the learning curves to the left. We confirmed that SR significantly47

outperforms baselines also when rewards are plotted vs timesteps.48

Formal analysis Our work contributes an extensive empirical validation of SR, we leave formal analysis for future work.49


