
We thank all reviewers for their overwhelmingly positive feedback on our work. Each reviewer provided helpful1

suggestions to improve our manuscript that we address below, while providing extra experiments as requested.2
3

Reviewer 14
• “Can or should the adversarial cases listed in the paper [...] be modeled as *worst* case attacks?”5

Our work complements a recent, growing body of work on Byzantine ML, where worst-case failures capture a range6

of things that can go wrong during training: power outages, software bugs, bit-flips at the storage/network/app level,7

and adversarial nodes that corrupt the trained model by sending erroneous gradients. Due to the wide range of failures,8

modeling them as worst-case allows for universal robustness guarantees.9

• “Can the authors show simulations practical cases failures [...]?"10

Simulating many different types of failures is interesting but challenging from a system and cost-of-experiments11

perspective. Still, in our experiments on real distributed systems, we simulate the strongest known type of node12

failures/adversarial gradients, in order to showcase our performance even under the most challenging setups. Under all13

these setups, DETOX consistently improves robustness and speed by orders of magnitude.14

• “[...] how their approach is exactly affecting the communication and computation cost [...]?”15

Our communication cost is identical to the vanilla parameter server aggregation cost, as each node sends to the PS16

a single gradient. In terms of the cost of computation, we discuss in the paragraph “Improved speed” ln. 160 - 170,17

how DETOX improves the aggregation runtime to nearly linear per iteration, cutting down the quadratic runtimes of18

state-of-the-art robust aggregators. This improvement naturally varies with different aggregators used, as we discuss in19

the same section.20
21

Reviewer 222

0 100 200 300 400
Wall-clock Time (Mins.)

10
20
30
40
50
60

Te
st

 A
cc

ur
ac

y 
(%

)

Bulyan q=1
D-Bulyan q=1
Multi-krum q=1
D-Multi-krum q=1

(a) q = 1, VGG13-BN, ALIE attack

0 100 200 300 400
Wall-clock Time (Mins.)

30
40
50
60
70

Te
st

 A
cc

ur
ac

y 
(%

)
Bulyan q=0
D-Bulyan q=0
Multi-krum q=0
D-Multi-krum q=0

(b) q = 0, VGG13-BN
Figure 1: Comparison of DETOX paired with
BULYAN, MULTI-KRUM versus their vanilla variants
for (a) the ALIE attack on VGG13-BN and CIFAR-
100 and (b) q = 0 (no failures

• Typos and clarifying variable names.23

Typos fixed. We will restate variable names when it is not clear from context.24

• “The framework is [...] substantially more complex and may make adoption [...]25

more difficult.”26

This is a valid concern. We want to note that DETOX is modular and hardcoded27

to the training process. From a user’s point-of-view, the only choice required is28

what the local aggregators A0 and A1 will be. In our implementation (anonymously29

available at: http://bit.ly/2SRyvcS) this can be done by changing one line of30

the code. Since this is a relatively minor code change, we hope that this will make31

adoption easier.32

• “Provide [...] results [...] for more values of q, including q=0.”33

We will provide a thorough study on the effect of varying q in the camera-ready34

version, including the ones shown in Figure 1. Due to the space limit, we show here35

the experimental results of q = 0 and q = 1 (under ALIE Byzantine attack). We36

observe that DETOX versions of robust aggregators consistently beat their standard37

versions. Different values of q do not seem to affect the robustness and scalability38

of DETOX.39

40

Reviewer 341

0 5001000150020002500300035004000
Num of Iterations

20
30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y 
(%

)

D-signSGD signSGD

(a) ResNet-18 on CIFAR-10

0 1000 2000 3000 4000 5000
Num of Iterations

0
5

10
15
20
25
30
35
40

Te
st

 A
cc

ur
ac

y 
(%

)

D-signSGD signSGD

(b) VGG13-BN on CIFAR-100

Figure 2: Convergence of SIGNSGD with and with-
out DETOX under constant gradient attack for: (a)
ResNet-18 on CIFAR-10; (b) VGG13-BN on CIFAR-
100

• “[...] majority vote [...] might lead to a big loss in terms of variance reduction.”42

This is a subtle point that can cause confusion. DETOX makes nodes evaluate43

redundant gradients, so that there is no increase in variance. Notice that DETOX44

first assigns a set of br/p data points to each node group. The nodes in each45

group are assigned the same set of br/p points. The nodes then compute the46

mean of gradients of these points. All “honest” workers in a group return the47

same averaged gradient, while averaging leads to variance reduction by a factor48

of br/p. If the majority is won by the “honest” nodes in the group, this reduced49

variance gradient is propagated to the second phase of hierarchical aggregation.50

We clarify this in lines 172-176, and this fact is used in the proof of Theorem 3.51

• “[...] I would highly encourage the authors to try incorporating something52

like signSGD [...] in the base layer.”53

Thank you for the suggestion! We agree that incorporating DETOX with54

SIGNSGD is valuable. We conducted experiments on DETOX paired with55

SIGNSGD versus vanilla SIGNSGD under a constant Byzantine attack, where56

Byzantine nodes send a constant gradient matrix where all elements equal to57

−1. The experimental setup is p = 45, q = 5. The results are shown in Figure58

2. We will include a longer version of this experiment in any camera-ready59

version.60

http://bit.ly/2SRyvcS

