
On the Expressive Power of Deep Polynomial Neural Networks1

We thank the reviewers for their positive and useful comments. One shared concern among the reviewers seems to2

be that our study of the exact functional space and its dimension might not be directly helpful for understanding the3

practical ability of a network to represent functions approximately. This criticism may be prompted in part by our4

claim that “we do not emphasize approximation properties, but rather the study of the functions that can be expressed5

exactly using a network” (Sec.1.1). While it is true that we do not directly address the issue of approximation, our6

theory also suggests a geometric framework for characterizing the class of functions that can be approximated well by a7

neural network. In particular, when the functional variety is not filling, one can naturally consider functions that are8

“close” to the variety (nearness could be formalized by considering tubular neighborhoods of the variety). Given that our9

functional varieties are generalizations of families of low-rank tensors, this perspective might lead to quantitative results10

in terms of generalized versions of SVD (applied for example to tensor flattenings). In fact, motivated by the reviewers’11

questions, we plan to think about computational methods for “projecting” a polynomial on a functional variety. In a12

broader sense, we believe that a theory of “exact expressivity” of neural networks should have greater explanatory power13

compared to a purely approximation-based analysis. The fact that the former perspective has received less attention14

could be due to the lack of appropriate tools for addressing it; we hope that our algebraic framework can open the door15

to new work on this topic. If the paper is accepted, we will mention these directions, and remove the aforementioned16

sentence from Sec.1.1.17

Reviewer 1.18

- “I’d ask the authors to respond to my above question about approximation.” See our detailed answer above.19

Reviewer 2.20

- “it is difficult to see how this measure translates to actual measures of interest to expressiveness analysis [...] the naive21

dimension bound provided matches exactly with other works on memorization, i.e., it is proportional to the number of22

parameters in a network.” In addition to our general answer above, we believe that the algebraic framework may be23

used to derive new approximation bounds. For example, while it is true that our naive dimension bound is proportional24

to the number of parameters, the existence of “asymptotic bottlenecks” (Theorem 19) shows that in many situations25

these two quantities are very different (in the presence of a bottleneck, even if widths grow arbitrarily, the functional26

dimension stays bounded): our theory detects this discrepancy, and the corresponding effect on expressivity.27

- “it appears that even for very small input spaces (e.g., 28x28 MNIST images) and squared activations the required28

minimal widths are already infeasible” We agree that the filling conditions are unlikely to be satisfied in practice, and29

for this reason we believe that learning in real-life architectures takes place in a non-filling regime. Still, qualitative30

distinctions between filling and non-filling architectures are theoretically important, and consistent with numerous31

existing results showing that learning is easier in the infinite-width setting. Furthermore, we believe that refined notions32

of filling will help bring our theory closer to practice. Specifically, one could consider “empirical filling", i.e., whether33

given any sample set of a fixed size, there exist weights that perfectly interpolate the data. Also, a notion of “relative34

filling” could help compare different architectures, i.e., when two architectures give the same functional space. We will35

remark in the paper how these notions could be studied in future work.36

- “are the ranks computed to give exact answers [...], or are you using the standard floating-point numerical methods37

that are only estimates? I suggest the authors emphasize this aspect in the paper.” Our computations are based on finite38

field arithmetic, using a large prime number to define the base field. As we will clarify in the paper, all filling dimensions39

are provably correct over R while all other computed dimensions are correct over R with very high probability.40

Reviewer 3.41

-“It would have been nicer to see more investigation of whether such networks can be trained to learn polynomials”42

The focus of this paper was on expressivity, and we only briefly touched upon optimization/learning in Sec.2.3. We are43

currently working on developing the connection between filling architectures and optimization further. For example,44

we conjecture that the absence of non-global local minima in the landscape of deep polynomial networks is actually45

equivalent to the condition that the functional space is filling. If true, this property would vastly generalize known46

results on shallow quadratic networks. We are also investigating how refined notions of filling (see above) may yield47

favorable optimization properties. We believe however that these issues fall outside the scope of the current paper.48

- “Another point is that there may be advantages to use activations like sigmoid” In general, we agree that there may49

be benefits in using non-polynomial activations, as universal approximation theorems require them. However, we are50

unsure about the practical difference between using polynomial activations and ReLU or sigmoids (folklore seems to51

say that the choice of the activation is not so important). For example, there are optimization methods that involve52

expressing a non-smooth function (e.g., absolute value) as a limit of polynomial functions (“η-trick”). Spelling out the53

connection between polynomial networks and sigmoid or ReLU networks is an important issue that we will look into.54

- “it would be better to list the main results upfront” We thank the reviewer for this useful suggestion. Unfortunately,55

for most of our results, a precise formulation of the statement requires notions and terminology that are only introduced56

in Sec.2. However, if the paper is accepted, we will include informal versions of our main results at the end of Sec.1.57


