
Table 1: Classification accuracies and F1 scores in percentiles under the imbalanced setting

Method Cppcheck Flawfinder CXXX 3-layer BiLSTM 3-layer BiLSTM + Att CNN Devign (Composite)
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Linux 75.11 0 78.46 12.57 19.44 5.07 18.25 13.12 8.79 16.16 29.03 15.38 69.41 24.64

QEMU 89.21 0 86.24 7.61 33.64 9.29 29.07 15.54 78.43 10.50 75.88 18.80 89.27 41.12

Wireshark 89.19 10.17 89.92 9.46 33.26 3.95 91.39 10.75 84.90 28.35 86.09 8.69 89.37 42.05

FFmpeg 87.72 0 80.34 12.86 36.04 2.45 11.17 18.71 8.98 16.48 70.07 31.25 69.06 34.92

Combined 85.41 2.27 85.65 10.41 29.57 4.01 9.65 16.59 15.58 16.24 72.47 17.94 75.56 27.25

Table 2: Classification accuracies and F1 scores of Devign as data size increases
Data size Linux QEMU Wireshark FFmpeg Combined

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

1/3 67.29 76.58 66.96 64.26 71.37 52.65 61.88 67.67 66.64 67.80
2/3 74.67 83.51 72.10 66.17 75.58 54.32 65.58 71.72 68.42 68.52

whole dataset 79.58 84.97 74.33 73.07 81.32 67.96 69.58 73.55 72.26 73.26

Reviewer 1 : Thanks for the valuable comments. This work aims at encoding rich semantic information of program1

into the neural networks. The semantics of programs are typically captured via AST, CFG, DFG, which are in graph2

structure. GNN can naturally encode these semantic information. We will include more description about why we3

chose graph embedding and the motivation of our approach in the next revision.4

Reviewer 2: Thanks for the valuable comments. 1) The “Linux” in our dataset means “Linux Kernel”. 2) We will5

include the line numbers in graph generation subsection, repeat the questions that the experiments address, add a table6

for Q4, and summarize the hyper-parameters in a separate subsection of “Devign Configuration” in the future revision.7

3) We have made our dataset public available in our website.8

Reviewer 3: Thanks for the valuable comments and questions. 1) We understand the reviewer’s concern that the ratio of9

vulnerable and non-vulnerable functions in our dataset is relatively balanced compared to practical applications. Directly10

using our model, as well as any other trained model to classify more imbalanced data may affect the performance. A11

practically usable trained model has to be customized and tuned specifically to each application and data set case by12

case. Besides, there are various methods specially for data imbalance to alleviate the issues. Due to time limit, we13

cannot incorporate these techniques and retrain models, but we conducted experiments on using our trained models to14

predict under the imbalanced setting. A large industrial scale analysis in [1] shows that vulnerable functions is around15

10% of total functions, therefore we randomly sampled the test data to create imbalanced datasets with 10% vulnerable16

functions. The results are shown in Table 1, where our approach achieves much better performance with an F1 score17

averagely 17.03 higher than all the machine learning methods under the same imbalanced data setting.18

2) Comparison with static analyzers: We compare with the well-known open-source static analyzers Cppcheck,19

Flawfinder and a commercial tool CXXX which we hide the name for legal concern. Table 1 shows the results,20

where our approach outperforms significantly all static analyzers with an F1 score 27.99 higher in the imbalanced21

setting. Static analyzers tend to miss most vulnerable functions and have high false positives, e.g., Cppcheck found 022

vulnerability in 3 out of the 4 single project datasets.23

3) Difference with [19]: We focus on applying the GNN to learn the representation of vulnerable functions, which is24

same as [19] did to use it to learn for variable prediction. The AST, Control Flow and Data Flow edges we used are25

classical code property graph representations in programming analysis. We did not take this alone as a contribution, but26

did explore and find that applying all these edges help to learn better generally. One important note is that [19] didn’t27

introduce the control flow graph (CFG), which is crucial in vulnerability analysis. We compared our method with the28

edges selected in [19] and found the performance without CFG is much worse than the one with CFG, i.e., accuracy29

68.96 and F1 65.12 without CFG v.s. accuracy 72.26 and F1 73.26 with CFG.30

4) Learning programming semantics across projects: We don’t think it can be simply concluded that no-semantic31

meaning can be learned across projects because the accuracy on the combined dataset is slightly lower than the average32

of the 4 datasets. The data from the 4 projects are too diversified from each other in terms of functionality, major33

vulnerability types, and root causes. Thus the diversity of the vulnerabilities in the combined datasets is much wider34

than each single data set. To deal with the diversity in the combined data, we believe that more data required to improve35

the overall performance. To verify it, we tested trained models with different sizes of the combined dataset, i.e., 1/3, 2/336

and all of the combined dataset. As shown in Table 2, both accuracy and F1 increases as the data volume increases. In37

addition to data diversity, the data size of each project also causes imbalance in the combined data set, which further38

impacts the overall performance.39

[1] Automated identification of security issues from commit messages and bug reports. FSE 2017.40


