
We thank the reviewers and the ACs for their insightful comments. Please find our point-to-point responses below.1

Reviewer #2: We find the reviewer’s suggestions very helpful in improving the quality of the manuscript. We will2

address the various points raised and include this discussion in the updated version of the paper. - Our choice of using3

the mixed-norm was motivated by the sensing model. Each sensing matrix is the outer product of a Gaussian vector4

and a standard basis vector. The former has its energy spread across all coordinates whereas the latter is localized.5

We chose Banach spaces for the domain and range accordingly and we chose the appropriate tensor norms, to build a6

unifying view on previous relevant results. On the technical front, the measurements obtained under our sensing model7

(Equation 2) form an embedding of the set κ(α,R), resulting in an optimal sample complexity. The proof depends on8

the entropy number of κ(α,R) with respect to the maximum-column norm, which has a favorable dependence on the9

number of degrees of freedom (Lemma 4). Hence, using the mixed-norm as a characterization of low-rank matrices is10

critical for our sensing model. - The guarantee on nuclear norm minimization by Recht et al. was based on the restricted11

isometry property (RIP). However relevant negative results on the RIP of rank-one measurements have been shown12

[7]. Instead, we compared our results to a more recent approach with the nuclear norm [11] in the manuscript. - While13

averaging measurements over columns provides a measurement with a full Gaussian matrix, the resulting number of14

measurements is smaller by a factor of the number of columns. Therefore the sample complexity increases accordingly.15

- We agree that the usage of the term “decentralized” is not consistent with that in the optimization literature and it might16

cause confusion among the readers. Therefore we will replace “decentralized sketching” by “distributed sketching". -17

In general, tensor-product norms are not given as a function of spectrum of a matrix. One exception is when the domain18

and range are Hilbert spaces. - With regards to comparison with max-norm regularization, since our choice of the tensor19

norm is according to the structure of the measurement procedure, such a comparison will help illustrate the importance20

of model-based design of our convex program. It would also be interesting to see how the method competes with the21

quasi-norm-based method by Shang et al. along with other nonconvex optimization approaches. We plan to demonstrate22

these experimental results in an extended journal version where we also plan to present the generalization of the theory23

to a broader class of tensor norms. - Although the parameter R is not known a priori, it is possible to tune it via the24

following heuristic: one can start with low values of R, resulting in higher residuals (since the ground truth matrix is25

not in the set) and increase R until the residual plateaus. - Our proof up to (16) was inspired by the analogous part26

in [7] but deviates significantly after this. We have derived the concentration bound on the quadratic term in (16) by27

specializing the suprema of second order chaos processes to our sensing model. More importantly, the entropy estimate28

to bound the Talagrand γ2-functional is new and has been derived based on our own extension of Maurey’s empirical29

lemma [reference 7, supplementary material] from `n1 to a set of Banach spaces. - We found that Bruer’s PhD thesis is30

highly relevant and explored many inspiring algorithms and experiments. We will add a discussion comparing this31

thesis to our work in the updated version of our paper. - Our notation for the injective and projective tensor norms has32

been borrowed from [21].33

Reviewer #3: Thank you for the detailed comments on notations and typos. Although some notation was adapted using34

conventions in the literature, we will further clarify these in the context of our paper for better readability. The inner35

product in eqn (2) is given as 〈A,B〉 = trace(B>A). The norm with subscript ∗ denotes the nuclear norm, that is, the36

sum of all singular values, and coincides with the trace of the matrix when it is positive semidefinite. The norm with37

subscript∞ denotes the `∞-norm, that is, the maximum absolute entry. We will also make the following edits as per38

the reviewer’s suggestions: The mixed-norm is defined as the minimum over all possible factorizations of the matrix X,39

the product of the Frobenius norm of the left factor and the maximum column norm of the right factor and in Eqn (4),40

U and V can have any arbitrary matching dimensions; Line (48) should say ‘Assume’; Eqn (3) considers the maximun41

over the indices j = 1, · · · , d2; The right-hand side of eqn (9) should be supu∈Rd2 ,‖u‖p=1 ‖Xu‖q. The reviewer also42

suggested to consider the extension to subgaussian case. - We have verified that our theoretical result remains valid43

when the non-zero entries of the sensing matrices are drawn from any symmetric subgaussian distribution. - As for44

the entropy estimate in Lemma 2, we did not include the full proof to the supplementary material because we plan to45

present the result and its generalization to other pairs of tensor norms in a separate journal submission. We have hence46

included only a sketch of the proof.47

Reviewer #4: We appreciate the reviewer for many constructive suggestions. We aim to conduct experiments on48

large-scale datasets from various real-world applications including hyperspectral imaging (AVIRIS dataset), fMRI49

(www.humanconnectome.org), neural recordings, and the MovieLens datset. Data in these domains have high dimen-50

sions owing to the measurement resolution, but it is common for them to have low dimensional structure. - As the51

reviewer suggested, extending our algorithm/analysis to handle outliers could be interesting for various applications.52

For example, in genomics and video data, outliers are frequently observed and add serious artifacts to the analysis.53

Additionally we will further extend our findings to a broader class of tensor-norm models with applications including54

those studied in Bruer’s thesis (suggested by Reviewer #2). - In order to compare our methods against max-norm and55

others suggested by reviewer #2 and in order to experiment on real datasets, we need to study further the computational56

aspects of our algorithm. In particular, we plan to focus on how to tune the parameters (α, R), how to parallelize the57

computation and also explore different techniques to choose the step-size in the update steps.58


