
We would first like to thank the reviewers for their insightful comments on our work.1

Reviewer #1 and #3 suggested that our current experimental section was offering little added value on top of our2

theoretical analysis. Although our main motivations are theoretical (i.e. explain theoretically why zero-order algorithms3

can provide the same guarantees as the first-order counterparts in non-convex settings), we provide a new experimental4

section that we believe couples well both with our stated goals as well with the prior related work in the area. Given5

the reported empirical success of zero-order algorithms in many applications, the scope of our experiments was not6

to verify the success of AGD or PAGD in general practical settings but to demonstrate the effect of saddle points for7

the case of zero order algorithms (versus first order methods). To offer an even better illustration of the above point,8

we propose to replace the 2-d rastrigin function with a high dimensional version of octopus function as presented in9

[DLJ+17]. This function is particularly relevant to our setting as it possesses a sequence of saddle points. The authors10

of [DLJ+17] proved that gradient descent needs exponential time to avoid saddle points before converging to a local11

minimum. In contrast the perturbed version of gradient descent does not suffer from the same limitation. Figure 112

clearly shows that the zero-order versions have the same iteration performance with the first-order ones. In fact, AGD is13

shown to behave even better than GD in this example thanks to the noise induced by the gradient approximation. Thus14

our theoretical findings are verified even in this well-established and challenging benchmark.15

Reviewer #1 asked us about the motivation behind our choice to study the case of an arbitrary h0 selection in contrast to16

a random one. Our main motivation was to offer similar guarantees with the first order counterparts [LPP+17] , i.e the17

avoidance of saddle point stems from their instability and not from an extra random dimension. Additionally, in our18

experience practitioners of zero-order methods tend to use some fixed values based on the machine precision and not19

generally some randomly sampled numbers. Thus, providing these stronger guarantees, our result reflects better what20

actually happens in practice.21

Reviewer #1 asked for a clarification about the cost of a line search alternative. The main intuition is that one can try22

progressively smaller values of h until the value of f is decreased [Torczon, V.J. (1997)]. Using Lemma 3 and property23

iii) of Definition 4, one can see that the required number of trials actually depends on the norm of the gradient at the24

current iterate. For convergence to first-order stationary points ,i.e (‖∇f(xk)‖ ≤ ε), this is hardly a problem, since25

‖f(x)‖ ≥ ε until termination and finding an appropriate h is trivial. However, for second-order stationary points, such26

trivial termination condition does not hold. Therefore ‖∇f(x)‖ can be arbitrarily small and thus the sample complexity27

of this process may be unbounded in terms of 1
ε . One of the surprising contribution of our work is that there exist28

zero-order methods (like PAGD) that can escape saddle points in a bounded number of iterations with a fixed h.29

Finally, all the minor typos spotted by the reviewers will be corrected for the camera ready version. Regarding the30

issues of presentation for both the main text and the appendix, we will be happy to follow the suggestions of Reviewer31

#1. Additionally, about the difference of the writing style between section 4 and 5, that Reviewer #4 mentioned, we32

plan to hide the details of Corollary 1, Lemma 2 and Theorem 3 expressing their main intuition in text.33
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Figure 1: Octopus function of d = 15. Parameters of the function τ = e, L = e, γ = 1. Parameters of first order
methods taken from [DLJ+17]. Zero order methods use symmetric differencing with h = 0.01
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