
Model uv-loss 1 cm 2 cm 3 cm 5 cm 10 cm 20 cm

DensePose-RCNN (R50) [5] MSE 5.21 18.17 31.01 51.16 68.21 78.37
full (ours) 5.67 18.67 32.70 53.14 71.25 80.47

HRNetV2-W48 [*] MSE 4.31 15.19 27.14 47.07 69.76 78.66
full (ours) 5.70 18.81 31.88 52.20 74.21 82.12

HG, 1 stack (Slim DensePose [12]) MSE 4.31 15.62 28.30 49.92 74.15 83.01
full (ours) 5.34 18.23 31.51 52.40 74.69 82.94

HG, 8 stacks (Slim DensePose [12]) MSE 6.04 20.25 35.10 56.04 79.63 87.55
full (ours) 6.41 20.98 35.17 56.48 80.02 87.96

Table 1: Performance of uncertainty-based models on the DensePose-COCO dataset [5]. [*] Sun et al. High-
Resolution Representations for Labeling Pixels and Regions. arXiv:1904.04514v1, 2019.

1: R1: The label-conditioned branch . . . seems [to be] only in Tab. 4. R2: The model whose uncertainty heads1

are conditioned on the ground truth during training performs better at test time. There are two reasons for2

modelling uncertainty: (i) to better understand systematic annotation errors at training time, which leads to more robust3

training and better point-wise prediction accuracy at test time and (ii) to be able to predict uncertainty at test time,4

regardless of whether this also results in better point-wise prediction.5

Effect (i) was observed in several papers (e.g. [14]) and is mostly due to the ability of the model to detect and discount6

annotation errors and very hard examples.7

Conditioning on the ground-truth part labels is useful for (i) but not for (ii) (because part labels are not available at8

test time). Since our goal is to also achieve (i), we focus on the conditioned models for (ii) in Tab. 4 and use the9

non-conditioned models in the other experiments. We have now conducted additional experiments for Tab. 4 using10

conditioned variants of the simple and iid models (in addition to the full as already in the table) and observed11

consistent gains (0.4-0.6pp @5cm, UV only).12

2: R1: Difference between simple-2D and full. simple-2D: assumes per-pixel error vectors to be independent (but13

not isotropicaly nor identically distributed); full: captures the correlation between per-pixel errors.14

3: R1: I found the evaluation choices are random. As requested, we have filled some gaps in the tables: For Tab. 115

in the paper, the HG-8stack performance of the full model (see Tab. 1 above). For Tab. 4: the performance of all16

models with uncertainty (see answer 1). For Tab. 5: the performance with tight thresholds with ensembling (similar17

gains 0.2-0.4pp@2cm, UV only, observed everywhere).18

4: R1: Simple-2D... best... in Table 3 with tight thresholds? R2: Simple-2D perform slightly better than the full19

error model, which however in turn receives a better neg. log-likelihood. Why? In practice, all our models that20

use uncertainty improve the average per-pixel prediction errors (PPE) by a similar amount. However, the full model21

also captures the error distribution better (because the errors between different pixels are highly correlated), which is22

reflected in the higher likelihood but not necessarily reflected in a lower average PPE. This is because average PPE is23

merely a marginal statistic which ignores the correlations predicted by our models.24

5: R1: Is the log-likelihood directly comparable? Yes, all models define a distribution on the same variables.25

6: R1: Is the uncertainty not fully correlated to the dense pose performance? See answer 4.26

7: R2: do not present the results of related work. R3: The only baseline is based on [13]. We report & outperform27

the Thrifty DensePose baseline of [12], which is near state-of-the-art for the problem of dense pose recognition (see also28

table at the top) (Parsing R-CNN is slightly better, but their models are unavailable). In Tab. 1 above, we also compare29

to the original DensePose-RCNN [5] and additionally report performance using the HRNet architecture (state-of-the-art30

in pose estimation and semantic segmentation) applied to the dense pose estimation task. In all cases, our models show31

consistent gains over the whole range of thresholds.32

8: R2: Significance of ensembling. Considering that predictions of the ensemble do not significantly differ (as noted33

in capt. of Tab. 5), which is a necessary condition for better performance, we find the improvement satisfactory.34

9: R2: Related... Probabilistic U-Net. Will add & discuss.35

10: R2: [does not model] the error between the part label predictions... nor... correlation of errors specific to36

regions. Model (3) does capture the correlations of error vectors within each region via the error term ε. Note, in37

particular, that this term is part-specific, not global. Part-labelling errors are also important, but accounting for them38

would require a dramatically more complex model due to the resulting switching behaviour.39

11: R2: Why learning with an uncertainty model helps training and final performance? See answer 1.40

12: R3: “Dense Human Body” by Wei et al.? The “Dense Human Body” is concerned with learning descriptors41

for matching pairs of 3D bodies; DensePose learns instead a map from any single image to a 3D model, so they solve42

different problems and their training setup is also quite different (as it is based on a set of classification problems).43

13: R3: Why a Gaussian distribution is a good model? Because errors usually have unimodal distributions and44

strong linear correlation, so a Gaussian is a reasonable model.45


