Model	uv-loss	1 cm	2 cm	3 cm	5 cm	10 cm	20 cm
DensePose-RCNN (R50) [5]	MSE	5.21	18.17	31.01	51.16	68.21	78.37
	full (ours)	5.67	18.67	32.70	53.14	71.25	80.47
HRNetV2-W48 [*]	MSE	4.31	15.19	27.14	47.07	69.76	78.66
	full (ours)	5.70	18.81	31.88	52.20	74.21	82.12
HG, 1 stack (Slim DensePose [12])	MSE	4.31	15.62	28.30	49.92	74.15	83.01
	full (ours)	5.34	18.23	31.51	52.40	74.69	82.94
HG, 8 stacks (Slim DensePose [12])	MSE	6.04	20.25	35.10	56.04	79.63	87.55
	full (ours)	6.41	20.98	35.17	56.48	80.02	87.96

Table 1: **Performance of uncertainty-based models on the DensePose-COCO dataset [5].** [*] Sun et al. High-Resolution Representations for Labeling Pixels and Regions. arXiv:1904.04514v1, 2019.

1 1: R1: The label-conditioned branch ... seems [to be] only in Tab. 4. R2: The model whose uncertainty heads

2 are conditioned on the ground truth during training performs better at test time. There are two reasons for

modelling uncertainty: (i) to better understand systematic annotation errors at training time, which leads to more robust
training and better point-wise prediction accuracy at test time and (ii) to be able to predict uncertainty at test time,

5 regardless of whether this also results in better point-wise prediction.

6 Effect (i) was observed in several papers (e.g. [14]) and is mostly due to the ability of the model to detect and discount 7 annotation errors and very hard examples.

8 Conditioning on the ground-truth part labels is useful for (i) but not for (ii) (because part labels are not available at

⁹ test time). Since our goal is to *also* achieve (i), we focus on the conditioned models for (ii) in Tab. 4 and use the

10 non-conditioned models in the other experiments. We have now conducted additional experiments for Tab. 4 using

11 conditioned variants of the simple and iid models (in addition to the full as already in the table) and observed

12 consistent gains (0.4-0.6pp @5cm, UV only).

2: R1: Difference between simple-2D and full. simple-2D: assumes per-pixel error vectors to be independent (but
not isotropically nor identically distributed); full: captures the correlation between per-pixel errors.

15 3: R1: I found the evaluation choices are random. As requested, we have filled some gaps in the tables: For Tab. 1

¹⁶ in the paper, the HG-8stack performance of the full model (see Tab. 1 above). For Tab. 4: the performance of all

¹⁷ models with uncertainty (see answer 1). For Tab. 5: the performance with tight thresholds with ensembling (similar

18 gains 0.2-0.4pp@2cm, UV only, observed everywhere).

19 4: R1: Simple-2D... best... in Table 3 with tight thresholds? R2: Simple-2D perform slightly better than the full

error model, which however in turn receives a better neg. log-likelihood. Why? In practice, all our models that use uncertainty improve the *average* per-pixel prediction errors (PPE) by a similar amount. However, the full model

²¹ use uncertainty improve the *average* per-pixel prediction errors (PPE) by a similar amount. However, the full model ²² *also* captures the error distribution better (because the errors between different pixels are highly correlated), which is

reflected in the higher likelihood but not necessarily reflected in a lower average PPE. This is because average PPE is

- ²⁴ merely a marginal statistic which ignores the correlations predicted by our models.
- 25 5: R1: Is the log-likelihood directly comparable? Yes, all models define a distribution on the same variables.

26 6: R1: Is the uncertainty not fully correlated to the dense pose performance? See answer 4.

27 7: R2: do not present the results of related work. R3: The only baseline is based on [13]. We report & outperform

the Thrifty DensePose baseline of [12], which is near state-of-the-art for the problem of dense pose recognition (see also

table at the top) (Parsing R-CNN is slightly better, but their models are unavailable). In Tab. 1 above, we also compare

to the original DensePose-RCNN [5] and additionally report performance using the HRNet architecture (state-of-the-art

in pose estimation and semantic segmentation) applied to the dense pose estimation task. In all cases, our models show

consistent gains over the whole range of thresholds.

8: R2: Significance of ensembling. Considering that predictions of the ensemble do not significantly differ (as noted

in capt. of Tab. 5), which is a necessary condition for better performance, we find the improvement satisfactory.

9: R2: Related... Probabilistic U-Net. Will add & discuss.

10: R2: [does not model] the error between the part label predictions... nor... correlation of errors specific to

regions. Model (3) *does* capture the correlations of error vectors within each region via the error term ϵ . Note, in particular, that this term is part-specific, not global. Part-labelling errors are also important, but accounting for them

³⁹ would require a dramatically more complex model due to the resulting switching behaviour.

- 40 11: R2: Why learning with an uncertainty model helps training and final performance? See answer 1.
- 41 12: R3: "Dense Human Body" by Wei et al.? The "Dense Human Body" is concerned with learning descriptors
- 42 for matching *pairs* of 3D bodies; DensePose learns instead a map from *any single image* to a 3D model, so they solve

different problems and their training setup is also quite different (as it is based on a set of classification problems).

- 44 13: R3: Why a Gaussian distribution is a good model? Because errors usually have unimodal distributions and
- ⁴⁵ strong linear correlation, so a Gaussian is a reasonable model.