
Relationship between the constant L and convergence rate, comparison w/ [23] (Reviewers #1 and #3). Th 3.31

(line 202) relates the algorithm convergence rate to the stepsize tk. This stepsize depends on the constant L through2

the expression of step#(p), which shows the dependency between convergence rate and L. In the paper, we prove3

that step#(p) is lower bounded. We have observed numerically that the stepsize is larger than the stepsizes used by4

other discretizations schemes in the heavy-ball method, as shown in Fig 3, and will provide further numerical evidence5

in the revised version. We are currently working on an analytical comparison with [23], which requires the explicit6

computation of a tight lower bound of step#(p) as a nonlinear function of s, α, µ, and L (R#3).7

Omitted relevant literature (Reviewer #2). We respectfully disagree with this comment, as we include the work by8

the authors suggested by R#2, see [3], [22], [23], [28] and [29]. It is impossible to provide an exhaustive literature9

review, but we will include recent papers1 (available after the submission of our work) by Attouch, França, and10

co-authors which deal, resp., with the discretization of inertial systems with Hessian-driven damping and conformal11

Hamiltonian systems to obtain optimization algorithms. We will include Kolarijani et al., which uses hybrid dynamical12

systems to generate fast optimization methods that employ constant-stepsize discrete dynamics. The differences with13

our work are clear, as none of these references design variable-stepsize integrators based on event-triggered control.14

Perceived limited applicability of the proposed setting and extensions beyond it (all reviewers). As a result of the15

concerns raised by R#2, we have realized that the twice differentiablity assumption can be weakened: in the heavy-ball16

case, only continuous differentiablity is needed for the discretization. In Nesterov’s case, twice differentiability arises17

from the presence of a Hessian term
√
s∇2f(x)v in the ODE, which is inherited by the discretization. The work [23]18

replaces it by∇f(xk+1)−∇f(xk) when discretized, providing an appealing research direction circumventing the use19

of the Hessian. It is standard practice in the literature to assume knowledge of µ and L for strongly-convex functions20

when looking for the optimal rate. Besides, several methods have been designed to approximate these constants in21

practice, and they can surely be adapted to our setting. As pointed by R#1, the function g is case-dependent, but the22

methodology presented here is applicable to the discretization of other dynamical systems endowed with a Lyapunov23

function certificate. We agree with R#3 that pursuing this will broaden the applicability of our theory. Although24

regularization can also be used to endow convex functions with strong convexity, it would also be extremely interesting25

to extend this methodology to the convex framework (R#2). Nonetheless, the main point of the paper is to introduce26

the idea of a systematic way to develop discretizations that maintain the convergence rate properties of their continuous27

counterparts. R#1 and #3 point out that the originality of the paper is “ basically beyond doubt” and we believe it may28

inspire new research given the recent explosion of activity in the area of high-resolution ODEs.29

Importance of opportunistic state-triggered control and variable-stepsize discretization (Reviewer #3). Oppor-30

tunistic state-triggered control saves resources by taking into account the current system state while maintaining31

performance guarantees. This is in contrast to periodic sampling, where worst-case scenarios have to be taken into32

account, drastically reducing inter-sampling time. Analogously, the proposed integrators take into account the current33

state of the dynamics through the values of v and∇f to adjust its stepsize while satisfying convergence and performance34

guarantees. This contrasts with fixed-stepsize integrators, whose stepsize is limited by the most unfavorable situation.35

In practice, this may have a critical impact on performance.We will address any possible confusion (especially regarding36

terminology) pointed by R#3 in the revised version.37

Simulations (all reviewers). We will include richer numerical experiments if the paper is accepted. We have run38

now simulations with quadratic functions defined by 50x50 matrices with similar results. Convergence will be shown39

by plotting the decay of the objective and Lyapunov functions (R#1). Regarding Fig 2, we show that the three40

discretization procedures follow the same trajectory (the continuous dynamics). The proposed approach is able to follow41

the curve taking longer stepsizes, thus making further progress when run for an equal number of iterations. Formally,42

let us denote by tk the stepsize of our method at iteration k and by s the stepsize of a fixed-stepsize integrator. After n43

iterations, our integrator approximates the continuous dynamics at
∑n

k=1 tk, while the constant-stepsize integrators44

approximates it at n · s. In simulations,
∑n

k=1 tk is significantly larger than n · s (R#1). We will also include the45

ET integrator for comparison in Fig 2 in the revised version (R#3). Finally, we introduce the optimal stepsize only46

for comparison purposes, as the minimizer is in practice unknown. Knowledge of the minimizer x∗ would enable the47

explicit computation of the Lyapunov function (cf. Th. 3.1), which in turn allows to solve V̇ + αV = 0 (cf. line 181)48

by any standard numerical method at any iteration. We refer to this solution as optimal stepsize (Fig 3, green), as is the49

actual largest stepsize one may take conserving the Lyapunov decay. Fig 3 illustrates how our algorithm is able to chase50

this optimal stepsize at any iteration, without knowledge of the minimizer (R#1 and #3). R#2 also points out that the51

computation of the stepsize may be convoluted. While the ET integrator is more involved, the ST integrator relies on a52

simple function of the quantities ‖v‖, ‖∇f‖ and 〈v,∇f〉, (see stepST , line 196) which can be computed easily.53
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