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We would like to thank the reviewers for appreciating our novel contributions on the algorithmic and theoretical front!
We focus on clarifying our experimental results in this rebuttal.

[Why DM fails at ModelFail and SSD-IS achieve EXACTLY the same results as DM at ModelFail?].

ModelFail was first introduced by Thomas and Brunskill [2016] to show the failure of model-based approach in the
MDPs with some partial observability. In ModelFail, the agent cannot tell the difference between any of the states
except for s;, but both DM and SSD-IS require full observability. From the point of view of both DM and SSD-IS, the
actions have no impact on state transitions or rewards, so every policy has the same cumulative reward (equal to the the
true cumulative reward of the behavior policy). A detailed discussion about why DM fails at ModelFail can be found in
[Thomas and Brunskill, 2016, Section D.1]. MIS can handle partial observability by using observable states and the

m(o321552) should

partial trajectories between them. Please refer Section 5.1 (line 258-262, there is a typo in Line 262, RG]
H Ao |Sor

m(a$)]?)
n(as|?)’

Also see Section C (line 567-575) in the supplement for more details.

where symbol “?” stands for “unobserved”, is an observed variable that the policy needs to react upon).

[Why MIS outperforms SSD-1S in time-invariant environments (including MountainCar) when n is large?].

The time-invariant ModelWin and MountainCar we used in the paper are finite-horizon undiscounted MDPs. Even
though these environments have time-invariant transitions, the state marginal distributions at each ¢ actually change
with time and only converge to the stationary distribution as t — oco.

SSD-IS uses the stationary distribution (t — o0) to approximate that for all ¢ = 1, ..., H which is biased and not
consistent even as the number of episodes n — co. MIS, on the other hand, uses nearly unbiased and consistent
estimators of the state marginals at every ¢. This allows MIS to outperform SSD-IS on Mountain Car when n gets large.
We believe this is the reason and we will investigate it in details in our future work.

Reviewer #1

[ “A specific baseline I would really like to see the authors add is the PDIS (per-decision IS) and CWPDIS (consistent
weighted per-decision IS).” |

The IS and WIS in the experiments are step-wise, which are essentially PDIS and CWPDIS. The detailed explanation is
in Section 3 and Section C.

[ “Why does it (§SD-1S) achieve . .. perform as well as MIS for mountain car but eventually stops improving?” ]
Please check the answers at the beginning.
[ “If p: is sampled uniformly at each time step, isn’t ... setting equivalent to a time-invariant MDP with p = 3.5?”]

Sorry for the confusion. Note that each transition probability p; is only sampled before the experiments and fixed during
the experiments for all episodes. We will clarify it in the final version.

Reviewer #2

Thanks for supporting our paper. We are planning to extend our approach to large-scale environments with extensive
function approximation.

Reviewer #3

[ “In Figure 2 and 3, why DM and SSD-IS method works well in ModelWin but perform very bad at ModelFail?” |
[ “For me it is surprised in time-invariant environment SSD-IS method perform worse than MIS method.” |

Please check the answers at the beginning.
[ “In Figure 3 (b) and (d), why the curve is not smooth even after 128 repetition?” ]

Note that the Y-axis is relative MSE, which is normalized by the true cumulative reward. In this time-varying MDP
(Figure 3), the true cumulative reward is related to the transition probabilities p; at each time step. We sample each
p¢ before the experiments and then fix them during the experiments, so the true cumulative reward is a non-smooth
function of H and the figures with increasing H should not be smooth. In the time-invariant MDP (Figure 2), the true
cumulative reward is a smooth function of H and the corresponding figures are smooth.
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