
We thank the reviewers for their comments and suggestions. Many of the comments are quite good and will improve the1

quality of the paper. Minor comments and typos have now been fixed in the text, and we thank the reviewers for pointing2

them out. Our point-by-point response to the reviewers’ major comments follows, with their comments italicized.3

Reviewer 1: . . . not much is discussed about the large sample consistency of the method. As far as we know, the4

identifiability of the Mondrian process in the infinite data limit is still an open problem. If such a theory were discovered,5

it would likely generalise to random tessellation processes. There is however work showing that Mondrian forests6

achieve minimax convergence rates for regression (Mourtada et al. 2018), and in future work those proofs may be7

adapted to random tessellation processes. We have added this discussion to the manuscript.8

Reviewer 2: . . . I’m curious about the comparison of runtimes against various methods. We display below the mean9

running time (in minutes) across different methods for the largest dataset SCZ93 (left table) and runtimes for the wuRTF10

on all datasets (right table). The experiments were run on an Intel Xeon CPU E5-2683v4@2.10GHz.11

Dataset LR SVM RF MRTF.i uRTF.i MRTF uRTF wMRTF wuRTF

SCZ93 0.006 0.012 0.006 0.005 89.106 43.534 35.802 41.759 41.068

Dataset SCZ42 SCZ51 GL85 SCZ93

Runtime 5.066 8.641 14.679 41.068

While the runtimes are not the focus of the paper, we will include a complete version of these tables in the supplement.12

Further, since submitting this work, we’ve developed new inference based on pseudomarginals allowing the spherical13

approximation and rejection sampling to be replaced by a scheme allowing exact samples without computation of14

λd−1([a]). Finding the radius of the sphere and rejection sampling are the bottlenecks for our methods, and so this15

advance will considerably improve the runtimes of RTF methods.16
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Comment 2: The approach would only seem to work in a bounded domain... W is compact, and so we should have18

used a strict subset. This is now corrected in the text. We note that projective processes can be extended to unbounded19

domains using Kolmogorov extension theorems. This is done for example in the Nagel and Weiss reference, but we do20

not consider it as it is not relevant for inference.21

Comment 3: I was skeptical that a rejection sampler would work as written in a space of even moderately high22

dimension . . . does the hyperplane . . . still intersect a with reasonable probability? & Comment 4: Similarly the23

authors state eg on line 168/169 that explicit computation of the polytopes a is not required . . . Is this approximation24

not increasingly poor in higher dimensions? Rejection sampling and computing the radius of the approximating sphere25

are computational bottlenecks (due to the reasons raised by the reviewer). This leads to longer runtimes. For D = 85,26

we are able to conduct inference with the rejection sampling, indicating that the interaction is still possible at this27

dimensionality. Since submitting this work, we’ve improved inference using a pseudomarginal method in which, instead28

of choosing a polytope to cut with probability proportional to the radius of a sphere, we instead sample a hyperplane29

cutting the whole domain and choose a polytope to cut uniformly among all polytopes that the cut intersects. This30

obviates the need for approximations and rejection sampling. We will discuss or report on this new method in the31

camera ready copy, should this work be accepted.32

Comment 5: What if lots of the test data is outside the collection of convex polytopes? When we form convex hulls,33

we consider a version of the training data that includes the predictors of the testing data. Testing data lying outside34

of the convex hulls formed by the training data will be ‘snapped to the nearest’ polytope. Further, when data are35

missing-at-random, test data will not generally lie outside of the convex polytopes formed by the training data and so36

not much data will be snapped in this way. Data affected by test/train shifts may suffer from this approach. However,37

test/train shifts tend to confound any machine learning method and so this analysis is outside the scope of the paper.38

Comment 6: The tessellations in T will not be equal wp1. . . . what is the mode of T? For each random tessellation39

process in a forest, we predict a label for each test point. By ‘mode’, we meant to refer to the mode of the distribution40

of the predicted label, and not the of the tessellations themselves. We’ve now clarified this in the text.41

Comment 7: What is the effect of setting the Dirichlet parameter α as you have in line 219... Our setting of α provides a42

weak prior matched to the empirical label frequencies. We do not use any higher level features. This method is popular43

for likelihoods in Bayesian nonparametrics. An exploration of this likelihood and also hierarchical likelihoods and44

Polya trees are an area of future work.45

Minor comment 6: Is it not sufficient to sample u from [0,r]? This was a typo. It’s indeed sufficient and correct to46

sample u from [0, r], and we do that in our implementation.47

Minor comment 14: If the budget is infinite, when does the partitioning procedure stop? We use a ‘pausing condition’48

that is described in Section 2.2.2 and originally proposed in Breiman 2001: if the training points in a polytope all have49

the same label then no further cuts are performed on the polytope.50


