
Thanks to the reviewers for the insightful and constructive feedback. It will surely improve the manuscript. Due to1

space constraints, instead of responding point-by-point, we address points in common with multiple reviews. All2

minor comments made by reviewer #1 have been addressed and incorporated into a revised version of the paper.3
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(a) i.i.d. ±1 Bernoulli design matrix
(top) and i.i.d. shifted exponential de-
sign matrix (bottom)
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(b) i.i.d. Gaussian design matrix
(top) and non-i.i.d. right rotationally-
invariant design matrix where AMP di-
verges (bottom)
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(c) i.i.d. Gaussian design matrix

Figure 1: Performance of AMP variants in dif-
ferent settings with Bernoulli-Gaussian prior, di-
mension = 1000, and sample size = 300.

i.i.d. Gaussian measurement matrix assumption. While, in general,5

AMP theory provides performance guarantees only for i.i.d. sub-Gaussian6

data, in practice, favorable performance of AMP seems to be more7

universal. For example, in Fig. 1a, we illustrate the performance of AMP8

for i.i.d. zero mean, 1/n variance design matrices that are not Gaussian9

(one i.i.d. ±1 Bernoulli (top) and one i.i.d. shifted exponential (bottom)).10

In both cases, AMP converges very fast, thus demonstrating its robustness11

to distributional assumptions.12

Recent work proposes a variant of AMP, called vector-AMP or VAMP,13

which is a computationally-efficient algorithm that provably works for14

a wide range of design matrices, namely, those that are right rotationally-15

invariant. We thank reviewer #2 for pointing us to “AMP for convex16

optimization with nonseparable penalties” by Manoel et al, which studies17

VAMP for a similar setting as SLOPE. However, the type of nonsep-18

arability considered in the referenced work requires the penalty to be19

separable on subsets of an affine transformation of its input. As such,20

the setting does not directly apply to SLOPE, but we have built a hybrid,21

“SLOPE VAMP”, based on code generously shared by the authors of22

the referenced work, which performs very well in the (non-) i.i.d. (non-)23

Gaussian regime (see Fig. 1a and 1b). Motivated by these promising em-24

pirical results, we feel that theoretically understanding SLOPE dynamics25

with VAMP is an exciting direction that we plan to pursue in other work.26

Known signal prior assumption. We are intrigued by reviewer #3’s27

suggestion of using EM- or SURE-based AMP strategies to remove this28

assumption. We would like to pursue this within the SLOPE framework,29

though we haven’t done so at this time. We believe that developing30

such strategies alongside SLOPE VAMP would provide a quite general31

framework for recovery of the SLOPE estimator.32

Comparison to MMSE AMP. In general, the (statistical) motivation for33

using methods like LASSO or SLOPE is to perform variable selection,34

and in addition, for SLOPE, to control the false discovery rate. Both35

methods are therefore biased and, consequently, MMSE AMP strategies36

will, by design, outperform if performance is based on MSE. To combine37

the best of both methods, one could also incorporate a “debiasing” device38

in SLOPE AMP, à la “Debiasing the LASSO: optimal sample size for39

Gaussian designs” by Javanmard & Montanari, but we will leave this for40

future work. Nevertheless, Fig. 1c suggests that SLOPE AMP has MSE41

that is not too much worse than MMSE AMP.42

Comparison to [20] and [12]. While [20] have the same asymptotic43

analysis, we have a clear, rigorous statement of where it applies. That is,44

the analysis in [20] applies if the state evolution has a unique fixed point,45

and our Thm. 1 states precise conditions under which this is true. More-46

over, we believe that our algorithmic approach offers a more concrete47

connection between the finite-sample behavior of the SLOPE estimator48

and its asymptotic distribution. We also agree with reviewer #2 that49

a discussion of the main results of [12] to highlight the gap between50

optimal estimators and any convex penalty would be useful for readers51

and we will add it to the final manuscript.52

Real-world data. We agree with reviewer #1 that performing an empirical study on real-world data will significantly53

strengthen our results. Previous research has tested SLOPE performance on Genome-Wide Association Studies (GWAS)54

data (see “The Northern Finland Birth Cohort of 1966 (NFBC)”). Due to its precedence in the SLOPE literature and its55

inherent scientific importance, we intend to test SLOPE AMP on this data, however, there are restrictions on its use and56

we are currently undergoing the protocols needed to be granted access to the data by the NIH.57


