
All reviewers agree that this contribution is timely, and recognize its potential impact. We thank R1 in particular for1

providing an excellent, concise summary of our contributions. While no major technical/scientific issues were raised in2

any of the reviews, our manuscript is nevertheless stronger by virtue of incorporating clarifications requested by R2, R3,3

and the addition of relevant references and stronger baselines (see Fig. below) suggested by R3. To reiterate our central4

contributions: we provided a rigorous analysis and proposed a solution for a critical technical issue that now enables5

learning of interpretable representations with coupled autoencoders. We applied this development to an unprecedented6

patch-seq dataset consisting of thousands of samples. Our optimization framework provides a novel, principled way of7

assessing the cell type hypothesis (e.g. Zeng and Sanes, 2017), and the results suggest that neuronal identities can be8

consistent to a surprisingly high degree across transcriptomic(T) and electrophysiological(E) modalities.9

Recognizing that the reviewers did not point to any technical or scientific flaws in the Improvements section, we10

respectfully hope that the clarifications and analysis provided here will warrant substantially higher scores.11

Misc. (R3) The dataset consists of 1252 differentially expressed genes, selected after excluding sex/mitochondrial12

genes. E recordings on the 2945-1518 neurons did not satisfy predefined quality control criteria. Indeed, an important13

strength of our approach is the ability to work with partially matched datasets. (R2,R3) We have added these and other14

clarifications, annotated well-known classes and hierarchical structure (Exc vs. Inh, Sst, Vip, PValb classes etc. in15

Fig. 2C) to make the connection to biology evident, and included 2D and 3D λ = 0 representations for completeness.16

Sec. 2.1-2.4: (R3) lines 37-42: There are no explicit transformation matrices required to go from one representation17

space to another for the coupled autoencoder. We rephrase this now to avoid confusion. (R3) line 248: α is first defined18

in Sec. 2.1, and used consistently in Sec. 2.2 and 2.4. As studied in Sec. 2.4, it represents the relative noise level19

in the different modalities. Since this ratio is not measured explicitly, we heuristically set α = 0.1 for all patch-seq20

experiments to capture the understanding that the T data is of higher resolution and quality. (R2) line 80: E and21

D can indeed be nonlinear; the statement only implies that they are at least capable enough to represent any linear22

transformation. (R2) The objective function contains two or more reconstruction error terms, and so all αi’s cannot be23

absorbed into λ. (R2) The suggestion to use a distance metric following normalization of individual representations24

would not prevent representations from collapsing. Proposition 2 proves why such strategies are guaranteed to fail, and25

formalizes exactly this non-trivial understanding of the problem.26

Feng et al. 2014: (R2,R3) Feng et al. do not specify any normalization (Batch Norm. (BN) paper appeared in 2015).27

tSNE transforms used in that paper hide the shrinking problem, and their representations display poor alignment for all28

parameter values (Fig. 11 in Feng et al. - squares vs. pluses). Without normalization, the representations asymptotically29

collapse to a point (Prop 1). With uncoordinated normalization (e.g., BN), they asymptotically collapse to a line (Prop 2,30

k-CBNAE). Our proposed solution (CMSV) avoids both problems, and is efficient and robust (Fig 1C,D and Sec. 2.3).31

Representation quality: (R2,R3) Our optimization framework trades off the consistency of representations across32

modalities against the fidelity of representations to raw data. The ultimate test of whether coupled representations are33

biased by either modality is the cross modal data prediction ability (as quantified in Fig. 4C). Representations zt and ze34

in Fig. 2C show consistency across modalities (dot positions), and capture biologically relevant transcriptomic hierarchy35

of cell classes (colors, Fig 2B-C). (R3) line 228, Fig. 3B: As coupling (λ) increases, zt and ze become more consistent36

(Fig. 3C), at the expense of zt capturing less of the transcriptomic hierarchy.(Fig. 3A). It is precisely because of this37

’handshake’ that λ = 10 is marginally lower than λ = 1 in Fig. 3B. While we do not tune α and λ, as multimodal38

datasets mature, it would be appropriate to optimize these parameters based on cross-modal data prediction ability39

(e.g. xt → zt → x̃e: start from raw T data xt, obtain the representation zt, and pass it through the E decoder to predict40

raw E data xe). We explore this systematically in Fig. 4C, where we show within and across-modality data prediction41

accuracies relative to reconstruction accuracy of individual, uncoupled (λ = 0) networks. From among the coupling42

strengths evaluated, λ = 10 strikes a desirable balance between measures of consistency in the latent space (Fig. 3B,C,43

example in Fig. 2C) while capturing known cell type hierarchies (Fig. 3A), and prediction accuracy (Fig. 4).44
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Revised Fig. 3.
Coupled AE represen-
tations outperform
additional CCA base-
lines: Tuples (t,e) in the
legend indicate the number
principle components for T
and E data used as input for
CCA alignment. Clusters of
coupled AE representations
(λ ∈ {1, 10}) agree with
transcriptomic class labels.
(A,B) and are consistent
across modalities (C)


