- 1 R1: Cut down on some sections (3.2.1, 3.2.2 and 3.2.5) to spare space for the qualitative examples.
- ² We will revise our paper according to the suggestion in the final version.

Model	MS-COCO							Flicker30k						
	Steps	Cross-Entropy Loss			Self-Critical Loss			Steps	Cross-Entropy Loss			Self-Critical Loss		
		М	С	S	М	С	S	Steps	М	С	S	М	С	S
Base	1/1/1	27.8	115.1	20.9	28.3	122.9	21.9	1/1/1	$22.3{\pm}0.04$	$60.6{\pm}0.3$	$16.8{\pm}0.05$	22.5±0.07	$68.2{\pm}0.2$	16.4±0.03
Recurrent	2/2/2 4/4/4	28.0 27.8	116.1 115.1	21.1 20.9	28.4 28.4	124.0 124.2	21.9 21.9	2/2/2 4/4/4	22.4±0.04 22.4±0.03	$60.8 {\pm} 0.1 \\ 61.3 {\pm} 0.5$	16.7±0.1 16.7±0.04	22.5±0.1 22.5±0.06	$68.7{\pm}0.3$ $68.8{\pm}0.4$	16.7±0.05 16.5±0.05
Adaptive	0/4/2.4 1/4/2.8 2/4/3.2	28.0 27.9 27.8	116.5 115.4 114.7	21.1 21.1 21.1	28.5 28.3 28.3	126.8 123.5 123.6	22.0 22.0 22.0	0/4/2.3	22.4±0.03	61.5±0.4	16.9±0.03	22.5±0.03	69.2±0.3	16.7±0.03

Table 1: Experiments on MS-COCO and Flicker30k datasets using single-head attention. (Row *Steps* shows the min./max./avg. attention time steps of each model.)

B2: Apply AAT on traditional single-head instead of multi-head attention to show that AAT helps.

We added experiments on MS-COCO and Flicker30k using single-head attention, Table 1. As can be seen, *adaptive* attention model with (0/4/2.4) yields best results, which show that AAT also helps single-head attention.

6 R2: The base attention model performs better than up-down and GCN-LSTM.

⁷ The reason lies in that the *base* attention model adopts a different structure (LSTM₁ in Section 3.1) and different ⁸ experimental settings (batch size, learning rate and schedule sampling rate in Section 4.1).

R2: Provide more analysis to find the reason for improvement from *recurrent* attention model to *adaptive* atten tion model.

11 The reason for *adaptive* attention model (AAT) improves from *recurrent* is that AAT helps to decide how many attention

12 steps (from zero to multiple, adaptively) to take before outputting a word, while the number of attention steps is fixed

13 for *recurrent*. Fixing attention steps introduces redundant or even misleading information since not all words require

visual clues [14]. In addition, our experimental results showed that increasing the number of *min*. attention steps for

adaptive attention model (1/4/2.8 and 2/4/3.2) degrades the performances, in Table 1.

16 R2: How much does the attention change over multiple attention steps for each word position?

17 It changed very much as shown in Fig. 1 in the appendix. For each word, the attention changes: **a**) towards more 18 accurate objects than previous steps; **b**) for objects which have connections with each other to obtain a better overview.

19 R2: How does the attention time steps vary with word position?

The numbers of attention time steps at the beginning of the sentence or phrases (e.g 'on the side" and "at a ball") are larger than those at other positions.

22 R2: Does this number change significantly after self-critical training?

²³ It doesn't change significantly after self-critical training but requires relatively less attention steps.

24 R2: Is it the case that self-critical training is necessary to fully utilize the potential of AAT?

- ²⁵ Yes. We experimentally found that self-critical training significantly boosted the performance (Table 1 in the paper).
- 26 R2: Why words at early decoding steps have little access to image information?
- ²⁷ Because the decoder incoorperates little information about the image at early steps.
- 28 R2: Are the ablations in Table 1 done on the same split as Table 2 (in the main paper)?
- 29 Yes, all the experiments in this paper are done on the 'Karpathy' splits.
- 30 R3: Add flicker results and report STD.
- ³¹ We experimented on Flicker-30k and reported results as well as STD in Table 1. STD on COCO dataset will be added

32 to the final version.

- **R3:** N(t) in eq. 14 is non-differentiable.
- N(t) doesn't contribute for the gradients, and it solely indicates the number of attention steps.