
We thank all reviewers for their comments. Minor comments will be addressed in the final version.1

Reviewer 12

Comparison with related work Thanks for the references to work of Ross & Bagnell, Saha et al., and Arora et al. All3

of these papers investigate the relationship between regret and stability of an online learning algorithm and a comparison4

between different stability conditions certainly makes sense. However, note that these papers do not investigate any5

of the following (that we do in our paper): connections with differential privacy, first order regret bounds, and partial6

information settings (Arora et al. do consider partial information). We will add a comparison in the final version along7

with a pointer to different types of stability conditions existing in the literature.8

Reviewer 29

Comment 1. Your questioning of the dimension dependence in Theorem 3.2 and Corollary 3.3 is valid. Indeed10

OGD/FTRL algorithms in these settings will not incur the dimension dependence. However, note that it is not at all11

clear whether this dimension dependence is due to the use of privacy tools and techniques. Indeed, even the best known12

zero-order bound (ref. [1] in our paper) for OLO in the `2/`2 setting via FTPL has a d1/4 dependence on dimension d.13

To the best of our knowledge, there is no existing analysis, whether privacy/stability based or otherwise, of any FTPL14

algorithm which does not incur at least this much dependence. It is unknown whether this is an intrinsic limitation of15

currently available analysis tools or of FTPL methods themselves. In fact, it is somewhat surprising that using the DP16

based analysis we get first-order regret bounds with a dimension dependence that is the best possible given currently17

available techniques. Further, this dimension dependence only arises in Theorem 3.2 and Corollary 3.3. Other results18

in the paper, e.g. experts setting result (Theorem 3.6) and multi-armed bandit result (Theorem 4.2) do not incur any19

avoidable polynomial dimension dependence.20

Comment 2. You’re right, Algorithm 1 has to solve a convex optimization problem at each step. But it shares this21

property with FTRL algorithms that have to do the same. As you mentioned, deriving a perturbed OGD type algorithm22

with a more efficient update will be an interesting topic for future work.23

Comment 3. The analysis of geometric resampling that takes error due to finite number of samples is already given by24

Neu & Bartok (ref. [26] in our paper). They showed that error due to drawing M samples contributes an extra KT/M25

term in the regret where K is the number of arms in a bandit problem. For zero-order O(
√
T ) regret bounds, one can26

therefore choose M of the order of
√
T (however the expected number of samples needed can be shown to be constant27

per time step, see their Theorem 2). For first-order bounds, one would have to choose a larger M of the order of T28

which increases the computation. We will add more discussion about this in the final version.29

Reviewer 430

adding DP definition to the paper Yes, we can do that.31

rank one Hessian of loss functions Yes, we are quite positive that the restriction can be removed (personal communi-32

cation with one of the top experts in DP). In particular, the corresponding DP result should hold for higher ranks at the33

cost of some degradation in the privacy parameter ε. Our online learning result will immediately inherit such a future34

improvement when it occurs in the DP literature.35

first-order bounds for non-convex problems This is an intriguing suggestion! The regret bound of the fictitious36

algorithm A+ does not use convexity! The only reason convexity is required in Theorem 3.2 is because the DP result of37

Kifer et al. required convexity. So if one had a DP guarantee for a perturbed ERM algorithm even with non-convex38

losses, everything would work. Of course, computing the perturbed ERM would involve non-convex optimization so39

efficient computation may not be possible.40

GPBA for OCO The best in hindsight action in OLO is argminx∈X
∑

t `
>
t x = argminx∈X L

>
T x =41

argmaxx∈X (−LT )
>x. This is simply the gradient of the support function of the set X , y 7→ maxx∈X y

>x, eval-42

uated at y = −LT . The gradient mapping does not arise in this natural way when the best in hindsight action43

argminx∈X
∑

t ft(x) is considered in the case of convex functions ft.44

DC assumption seems more applicable to the bandit setting A clarification is needed here: DC assumption was45

indeed introduced by Abernethy et al. (ref. [2] in our paper) in the bandit setting but note that it is actually an assumption46

on the potential function. If you look at the (short!) proof of Theorem 3.6 in Appendix B.3, you will see that DC47

property of a set of potentials also leads to regret bounds in the full-information experts setting. To summarize, the DC48

assumption is an assumption on potential functions. Certain potential functions (e.g., those that satisfy DC with a larger49

exponent γ) are better suited for bandit settings but the assumption itself is not at all tied to the bandit setting.50


