
We thank all reviewers for their detailed feedback.1

1 Reviewer 12

• About the solution for under-exploration: We agree that uniform exploration may not be the best possible3

approach. However, we think it makes the important point that adding some exploration in response to4

approximate inference can guarantee sub-linear regret, even though this particular form of exploration might5

not be optimal.6

• About stochastic optimism: Thank you for the reference, we agree that stochastic optimism in RL might be7

related. At first glance, stochastic optimism looks quite different from a bound on the error of alpha-divergence,8

but it would definitely be interesting to see if there is a deeper connection.9

• About experiments: We agree that Qt and Zt (which serve to illustrate the intuition about over-exploration10

and under-exploration) might not be natural approximations. However Figure 3 shows variational inference11

and ensemble sampling on a 50 armed bandit instance, which is more realistic.12

2 Reviewer 213

• About Garbage-in Reward-out paper [Kveton, 2019]: Thank you for the reference. This paper is related but14

does not study the same problem – they are not concerned with the case where the Thompson sampling’s15

inference oracle is approximate. We would cite and discuss it more thoroughly in a revision.16

• About presentation issues: Thank you very much for the comments. We will revise accordingly.17

• About the implication of Theorem 1: Typically, approximate inference methods minimize divergences. Broadly18

speaking, we show that making a divergence a small constant, alone, is not enough to guarantee sub-linear19

regret. We do not mean to imply that low regret is impossible but simply that making an alpha-divergence a20

small constant alone is not sufficient. We will clarify this point.21

• About the implications of all theorem statements:22

Broadly speaking, Theorem 1 implies that when the approximation scheme over-explores, even though the23

posterior may concentrate, we suffer regret because the approximation chooses the sub-optimal arm with24

higher probability than the posterior at every time-step due to over-exploration.25

On the other hand, Theorem 2 implies that when the approximation scheme under-explores, the posterior may26

not concentrate and therefore chooses the sub-optimal arm most of the times, leading the approximation to do27

the same. Theorem 3 strengthens Theorem 2’s observation by showing that adding forced exploration will28

help the posterior to concentrate and choose the optimal arm most of the times, leading the under-explored29

approximation to do the same.30

• About the correctness of the theorem statements: We believe the results are correct. It would be great if the31

reviewer could point out the points of concern.32

3 Reviewer 333

• We apologize for the grammatical mistakes and thank you so much for listing them.34

• Thank you also for the suggested edits about Bayesian agent in line 52 and reverse KL divergence in line 76.35

We will revise accordingly.36
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