
We thank all reviewers for their thoughtful comments and suggestions. We address each review separately.1

Reviewer #1. Regarding the encoder architecture impact, in Table 1, we vary the classification model making it2

increasingly more powerful, and demonstrate that our method produces improvements in all cases. For the agreement3

model encoder, we found that the results are not as sensitive to the encoder choice (e.g., for CIFAR10 switching from an4

MLP to a CNN did result in significant differences). We will include results for different agreement model architectures.5

Reviewer #5. We thank R5 for the relevant references. We were not aware of them—especially the contemporaneous6

ones from ICLR and ICML 2019. SNTG infers a similarity graph between samples, but it does so in a significantly7

different way than GAM. Also, in contrast to SNTG, we propose an additional self-training component, and our method8

is applicable when a graph is provided, whereas SNTG (as published) is not designed to use information from a provided9

graph. We will include a thorough comparison to SNTG and Fast-SWA in the paper. We will also discuss the following:10

– Parameters: Increasing the number of parameters of the baselines to match that of the respective GAMs results in11

worse performance for the baselines (e.g., in Table 1, MLP256 has the same number of parameters as MLP128+GAM, as12

we use an MLP128 for the agreement model, but it performs worse than MLP128+GAM and MLP128). This is expected as13

GAMs provide a robust form of regularization for training high capacity models that tend to overfit otherwise.14

– Convergence: Prior work [e.g., Blum and Mitchell 1998, Balcan et al. 2005] proves that co-training converges if: (i)15

the majority of the learners perform better than random guessing after the first iteration, and (ii) the mistakes they16

make are weakly dependent. Our experiments indicate that (i) is true in our case. (ii) is harder to verify due to the17

coupling between the models. However, our empirical evaluation shows that co-training converges successfully. Note18

that in Fig. 5, even the worse iterations are well above chance, so it should not diverge under these assumptions.19

– Experiments: The missing numbers for GCN1024+VAT are 83.4, 68.9, 79.5 on Cora, Citeseer, and Pubmed, while20

GCN1024+VATENT obtains 32.5, 8.5, 18.0, which follow the same trend as our other results. For VATENT, we observed21

that on the graph datasets the entropy term becomes large and dominates the loss. Decreasing its weight makes the22

performance to converge to that of VAT. Our implementation works on CIFAR10 and SVHN, thus it seems unlikely23

to be the reason behind the poor results. Interestingly, [2] reports only GCN+VAT results and not GCN+VATENT.24

Regarding comparisons with other methods, we will add the results reported in [2] to Table 1. Their best numbers are25

lower than our GCN+GAM. [4] tackles the same problem, but their evaluation is on random train/test splits rather than26

the commonly used Planetoid splits. We observe that the GCN paper reports much better results on random splits than27

[4], and we have demonstrated that GAM can be applied on top of GCN to improve it further. For completeness, we28

will report results on random splits and compare with [4]. To compare with SNTG and Fast-SWA, we plan to run the29

experiments with a 13-layer CNN suggested by R5 for the camera-ready. Note, however, that we do not necessarily see30

these approaches as competitors to GAM, but rather as additional regularizers that, similar to VAT, can be applied in31

conjunction with GAM to further improve generalization. To illustrate that GAM works for large networks too, here are32

results (obtained after the submission deadline) using the WideResnet of Oliver et al. 2018 on CIFAR10-4000: baseline33

79.69%, +Π-Model 83.63%, +Mean teacher 84.13%, +VATENT 86.87%, +GAM* 87.42%.34

Reviewer #6. R6 suggests a discussion on the challenges in simply replacing classification models in label propagation35

with deep learning models. We address this through an example from our paper, and then explain how this example is36

more broadly applicable. Replacing classification models in label propagation with deep learning models is exactly37

what Neural Graph Machines (NGMs) do (described in Section 2): an NGM is a label propagation model complemented38

by a deep learning classifier operating on the node features. Setting the regularization coefficients to 0 makes it a pure39

deep learning model, while increasing their values brings it closer to label propagation. When the graph is noisy, the40

regularization coefficients need to be small (otherwise the regularization forces connected nodes from different classes41

to incorrectly have the same label), thereby reducing the effect of the graph on the model. However, with such minimal42

regularization the model tends to overfit to the few available labeled examples. Our approach combines deep learning43

with label propagation in a manner that allows us to handle noisy graphs in a robust fashion. Note that other methods44

besides NGM also suffer from this problem (e.g., GCN, Planetoid)—see Robustness section. Our experiments show45

how GAMs are able to learn in a much more robust manner.46

Novelty: The novelty of our algorithm is the interaction between the agreement and classification models, which allows47

it to benefit from both label propagation and deep learning even when dealing with noisy graphs (where most label48

propagation algorithms fail), or no graphs at all. It is surprising and interesting that even though the two models learn49

using the same features and same data, their interplay can produce such large increases in accuracy on a wide variety of50

base networks (MLP, CNN, Resnet, GCN, and GAT), suggesting they learn complementary information.51

Co-Training: We argue that our proposed training algorithm does indeed fit in the co-training framework. While52

the original paper [Blum and Mitchell, 1998] proposed co-training in the setting described by R6, the same authors53

subseqeuently proposed co-training settings where some classifiers predict label distributions and others predict coupling54

constraints over these distributions (like in our setting). Perhaps the most notable and influential example of this is the55

Never-Ending Language Learning (NELL) system [Mitchell 2015, 2018].56


