
Simulation Update:1

• Environment: Our experiments are performed over a machine with 27 cores (Intel Xeon Processor E5-2682 2.5GHz)2

in Python 3.7. Each parallel node is an independent process/core and inter-process communication uses MPI4PY.3

• per round communication time vs per round computation time: The exact time depends on the number of4

nodes/processes and variable dimensions. In the experiment of Sec 4.1 , each computation round takes 0.3ms and5

each communication round takes 43.7ms. (Communication is 110 times more expensive in this case.)6

• Large scale real data set and more baselines: We further perform the multi-class (10 classes) classification task7

over MNIST data set, which contains 60000 training images and each image can be considered as a 784 + 18

dimensional feature vector. Since the number of classes is 10, the classification is a convex optimization with a9

7850 dimensional variable. Besides our method, RPDBUS ADMM, and DCS, we further test the deterministic10

ADMM and the stochastic ADMM in Pu&Nedic 18 (suggested by Rev5). We partition the training set into 4 disjoint11

subsets and solve the multi-class classification problem with 4 parallel processes. The wall-clock time (including12

both computation and communication) to converge to the optimal with ‖xi−xj‖∞ ≤ 10−4,∀i, j for each method is:13

our method (28.49sec), PRDBUS (1837sec), DCS (684sec), deterministic ADMM (12hour+), Pu&Nedic (3591sec).14

Note that our method is significantly faster than others when measured by wall-clock time.15

R2Q1: Elaborate more and discuss tolerance on failure of communication16

A: Our method is robust to failure of communication. If communication fails, we can skip (4-5) and let each local17

node continue to run its sub-procedure STO-LOCAL for one more time. Mathematically, this is equivalent to a normal18

Algorithm 1 implementation where one particular STO-LOCAL step runs more iterations. Our convergence analysis19

only requires a minimum number of iterations is executed in each STO-LOCAL sub-procedure. So the convergence is20

guaranteed by our theory. Both theoretical elaboration and extra experiment results will be reported in the final version.21

R2Q2: Decomposable property and L21 regularization.22

A: This paper assumes the original problem has been reformulated into (1), which has a decomposable structure. For23

problems with L21 regularization, the applicability of our method depends on whether they can be reformulated into24

(1). For example, consider a robust L21 feature selection given by minW ‖WTX −Y‖2,1 + γ‖W‖2,1. It can be25

reformulated as minW,V ‖V‖2,1 + γ‖W‖2,1 s.t. WTX−Y −V = 0. Since L21 norm is separable w.r.t. each row26

and linear constraints are separable w.r.t. each entry, it is decomposable w.r.t. each row of W and V and can be solved27

in a distributed way with our method.28

R3Q1: Strong duality in Assumption 129

A: Assumption 1 is mild for convex programs with linear constraints. For problems with linear constraints, Proposition30

6.4.2 in “D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and Optimization." ensures Assumption 1 as31

long as the feasible set is non-empty and the domain of the objective function satisfies any of the following 3 conditions:32

(1) contains the feasible set (2) open or (3) can be convexly extended to open sets. In particular, all linear programs with33

non-empty feasible sets satisfy Assumption 1.34

R3Q2: stochastic objective function and related papers35

A: The stochastic objective fun in Sec 4.1 is a pure stochastic function where the randomness is ci. The stochastic fun36

in Sec 4.2 is a finite sum that is expectation involving uniform distribution of the samples. Stochastic opt methods for37

Sec 4.2 allow us to evaluate a single sample rather than all samples for each iteration and yield low complexity. All38

your suggested papers on ADMM are discussed and cited in the revision.39

R5: dependence on network topology and references on "local averaging" methods.40

A: Yes, the dependence on network topology is hidden in ‖A‖. By our Remark 3, if we choose ρ to balance the41

dependence, both objective and constraint violations linearly depends on ‖A‖.42

Compared with Nedic et al. 2018, Scaman et al. 17, Uribe et al. 17, and Pu&Nedic 18, all of which use a doubly43

stochastic or symmetric PSD matrix for local averaging, our ADMM method has the following advantages:44

• Our inter-node communication pattern is more flexible and is not restricted to a (symmetric) pattern such as the45

(doubly) stochastic or symmetric PSD matrix. Of course, we can choose A = I−W where W is a stochastic matrix46

used in your suggested works since it ensures the consensus of local solutions. However, in general, we can use any47

A to ensure consistence as long as Null{A} =Span{1}.48

• While the dynamics of ADMM is different from mixing (local averaging) based method, our Theorem 1 and Remark49

3 suggest our method can have better dependence on network topology. Our convergence only depends on ‖A‖. By50

choosing A = I −W, we know ‖A‖ ≤ 2. The convergence in suggested works (using a doubly stochastic or a51

symmetric PSD W for mixing) further depends on 1/(1− {|λ2(W)|, |λN (W)|}) or eigengap λ1(W)/λN−1(W),52

which can be much larger than constant 2 if some eigenvalues are extreme.53

Nevertheless, the above suggested papers are related and complement ADMM methods. They are discussed and cited54

in the revision.55


