
To begin, we would like to extend our thanks to the reviewers for their detailed and insightful remarks. We reply to the1

reviewers’ major concerns below:2

Reviewer 1. We thank the reviewer for their positive evaluation and encouraging remarks!3

1. Regarding the lack of numerical experiments: we would kindly refer the reviewer to Section D of the4

supplement where we perform a series of numerical experiments on the resource sharing problem discussed5

in the paper’s body. In these experiments, we compare the convergence rate of Korpelevich’s extra-gradient6

algorithm to mirror-prox with a suitable Bregman function, and our adaptive mirror-prox variant. We wanted7

to include these experiments in the main body of the paper, but we ran out of space – we would be happy to8

use the extra page to do so if the paper is accepted.9

2. On the complexity of calculating mirror steps: indeed, in full generatlity, calculating mirror steps can be10

computationally expensive (just as Euclidean projections can be bottlenecks in many problems). As is common11

in the literature (see e.g., Nemirovski, 2004, Nesterov, 2007, Juditsky et al., 2011, and the many works12

citing these papers), we were tacitly assuming a “prox-friendly” setting where mirror steps can be computed13

efficiently. The example we presented is indeed prox-friendly because it only involves the calculation of a14

single Lagrange multiplier (which can be accomplished efficiently via a simple line search). We will gladly15

explain this in more detail in the paper.16

3. Beyond monotonicity: excellent suggestion! Albeit outside the scope of this work, local convergence in17

non-monotone VIs is one of our future research agendas and we would be happy to discuss it in more detail.18

Reviewer 2. We thank the reviewer for their positive recommendation! We address their main concerns below:19

1. On numerical experiments: please see Section D of our paper’s supplement and our reply to Reviewer 1 above.20

2. On adaptation via backtracking: this is a very interesting suggestion and we thank the reviewer for making it.21

Two particularly promising works in that direction are the 2006 JCAM paper of Y. He and the 2018 SIOPT22

paper of Malitsky and Pock. Carrying out a linesearch analysis along these lines lies beyond the scope of the23

current work, but we would be happy to discuss this promising agenda in detail in a revision.24

3. On (4.2b): yes, this was supposed to refer to the dual of the local norm. Apologies for any confusion!25

4. On the continuity condition of #4247: we believe there may have been a misunderstanding here. To put26

things on an equal footing, consider the problem of minimizing a given convex function f (the common27

denominator of variational inequalities and online/stochastic optimization problems). The growth condition of28

#4247 extends the notion of Lipschitz continuity of f to singular problems; by contrast, Bregman continuity29

(this paper) extends the notion of Lipschitz continuity *of the gradient of f* to singular problems.30

The optimization literature makes a clear distinction between these two settings (often referred to as “non-31

smooth” and “smooth” respectively), because they lead to very different algorithms and oracle complexity32

bounds – see e.g., Nesterov’s (2004) classical textbook on the topic. In particular, relative to #4247: (a) the33

algorithms are different (mirror-prox vs. FTRL); (b) the rates obtained are different (mirror-prox achieves34

a O(1/T ) convergence rate in deterministic minimization problems whereas, without further assumptions,35

FTRL only achieves O(1/
√
T )); and, of course, (c) as we stated above, the regularity conditions considered36

are clearly different, even in convex minimization problems.37

5. On (5.2): yes, the ρ below (5.2) should be θ, thanks!38

Reviewer 3. We thank the reviewer for their positive evaluation and constructive feedback! Our replies follow below:39

1. Regarding the “Lipschitz-like” condition of [6]: to clarify, this is an extension of Lipschitz gradient continuity40

for functions with singularities, and is designed to yield an appropriate descent lemma. Since there is no longer41

an objective function to minimize, descent lemmas are not applicable to variational inequality problems; as a42

result, we had to seek a different starting point altogether.43

2. Regarding the statement in Lines 13-15: we see the reviewer’s point, thanks! We did not mean for the sentences44

to be parsed in that order, we will of course change the phrasing accordingly.45

3. Regarding the definition of the local norm in lines 170-171: by a “continuous assignment of a norm” we had46

in mind the definition of an absolutely homogeneous Finsler metric as in the classic textbook of Bao, Chern47

and Shen, 2000. Specifically, a local norm is a continuous nonnegative function F : X → V → R+ with the48

following properties for all x ∈ X , z1, z2 ∈ V: (i) F (x, z1 + z2) ≤ F (x, z1) + F (x, z2); (ii) F (x, λz) =49

|λ|F (x, z); and (iii) F (x, z) > 0 whenever z ∈ V \ 0. The “local norm” at x would then be ‖z‖x = F (x, z)50

in this language. We will be happy to provide this more detailed definition in the paper.51

4. Regarding the numerical experiments in the supplement: AMP was run with θ = 0.9. In practice, we saw very52

little difference for values of θ between 0.5 and 0.99.53


