
We thank the reviewers for their inputs and comments. We are providing our responses below.1

[R1]: Practical Utility compared to Universum Prescription: Computation-wise: a) The training complexity of2

MU-SVM is not worse than Universum Prescription (UP). In fact, training MU-SVM in primal space is the same3

as training a single layered network architecture and is faster than UP. In addition, Proposition 3 enables utilizing4

state-of-art M-SVM solvers [1, 2] for solving MU-SVM. This provides a huge computation advantage for training5

MU-SVM. b) We agree that concurrency will further improve MU-SVM’s training speed and hence its practical utility.6

All existing parallel/distributed techniques used for UP also applies for MU-SVM in its primal form. Distributed7

implementation for the dual form of MU-SVM can be achieved through eq. 8 in [3]. This is an ongoing effort. c)8

Finally, Theorem 4’s bound based model selection provides massive speed up for hyperparameter tuning (Table 3, Table9

9 Appendix). This significantly reduces the computation complexity of the overall model building process and presents10

MU-SVM as a highly practical solution.11

Accuracy-wise: UP is not designed for high dimension low sample size settings (HDLSS). The hypothesis class induced12

by the UP architecture is complex and prone to high estimation error for HDLSS. This is also confirmed in our13

preliminary results (can be added if needed). Base-lining UP in HDLSS settings would be an unfair depiction of UP.14

[R1]: MU-SVM hyperparameters for HDLSS data :- As rightly pointed out by R1, selecting good hyperparameters15

for MU-SVM is of utmost importance for its effectiveness in HDLSS settings. We have proposed our solution to16

alleviate this in Section 3.4. Our empirical results (in Table 2 and 3) confirms that the approach works providing >17

20% improvement in test accuracies for MU-SVM compared to M-SVM. Additional results and the selected model18

parameters for reproducibility of the results are provided in Appendix B2. All our codes will be made public.19

[R2]: While we concede that due to the space constraints we had to make difficult stylistic choices, these are in line20

with the universum literature and the associated computational learning theory presentations. The equations spanning21

multiple lines is unfortunately an artifact of the associated math and space constraints which we will further attempt22

to fix in the final version. We will address the stylistic elements, as well as some typos that the reviewer suggested.23

However, we have double checked and maintain that the mathematical correctness of the presented content is accurate.24

We also appreciate the reviewer’s observation about the honest and accurate reporting of the experimental results. We25

have indeed tried to present a principled evaluation of the proposed approach. We address the specific concerns below:-26

Theorem 2 Typos : a) in definition of zi, f1 has to be replaced by f2, b) The bound in Appendix (pg iii) is due to27

Jensen’s and not Kahane Khintchine inequality, c) vT
j = (V)jthrow is column vector in pg. iv. These will be corrected.28

Theorem 2 additional analysis: Owing to space constraints we had to choose between a more detailed analysis of29

Theorem 2 vs. the analytic l.o.o bound for model selection. We believe the later is more important for the practical30

utility of MU-SVM. As also identified in R1’s comments, optimal tuning of the MU-SVM hyperparameters is of utmost31

necessity for its successful application under HDLSS settings. Table 3 shows that the proposed bound in Theorem 432

provides similar test accuracies, with significant computational gains compared to standard resampling techniques.33

Other Comments: (a) Bijection between i,i’,L in line 158 is defined in eq. 16. (b). We believe the reviewer meant the34

condition yiw
Txi ≥ 1 in page ii. Both these sets B and G have this constraint by definition. Statement in pg ii means :35

∃w ∈ G such that yiwTxi ≥ 1. Hence, dB ≤
dB∑
i=1

yiw
Txi. (c) The arguments at the top of page iv looks correct.36

[R3]: Multiclass extensions of the span bound: We were unable to find Remi Bonidal’s PhD Manuscript. Based on37

his DBLP record we believe his work rather focused on model selection using path solution for L2-SVM and not Span38

bounds. To the best of our knowledge there aren’t any Span Bounds available for M-SVM/MU-SVM algorithms. We’d39

appreciate if the reviewer can point us to the sources and we will appropriately update our introduction section.40

[R3]: Justification of choices: C & S M-SVM is probably the most popular multiclass SVM approach. Although its41

not Fisher consistent, this property may have little impact on M-SVMs performance for limited data settings. In fact,42

the results in [4] (Table 1) shows that M-SVM enjoys the smallest estimation error and (except one-vs-one) the smallest43

approximation error compared to other popular multiclass approaches. We will add a note on our choice of M-SVM.44

Natarajan Dimension allows us to extend Fundamental Learning Theorem to multiclass problems (Theorem 1) similar45

to binary problems using VC dimension. Also it’s the most widely researched capacity measure for multiclass SVMs.46

We agree that there are other improved capacity measures [5,6], however we do not foresee any additional understanding47

compared to Theorem 2 using such methods. A note on the capacity measures and our choice will be added.48

All the other comments are minor text edits and shall be included in an edited version.49
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