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We thank the reviewers for their careful consideration and their feedback, our short replies are provided below.

General response for Reviewers 1 & 2. -“Can the results be extended to convex loss functions?”.
Response: We studied the convergence analysis of our proposed method for strongly-convex and non-convex settings
in the paper. Indeed, we can extend our results to the convex case by choosing the stepsizes (o, &) = (T—%/4, T—39/4)

which will lead to a sublinear rate of f(+ Zthl %) — f* < O(T~%/?) for any § € (0,1/2). Here is a sketch of the
proof. Note that our approach to prove the convergence in the strongly-convex case was two-folded: to show that (1) the
sequence of our method x; converges to the optimizer of the penalty function x7,; and (2) x, converges to the global
optimizer x*. Similarly in eq. (20) but for convex loss, we have 2(hq (x¢) — hl) < e 'E|x; — x5 ||* — e ' E|x441 —
x5 + eE||Vha(x)|?. Together with eq. (21), we can simplify the previous telescopic sum and conclude the
convergence of ha(% Zthl x:) — h¥. Moreover, for the picked stepsizes, we can use the proof of standard SGD for
convex losses and show that a~'hy, — f*, as well a  ha (2 S %) — (& S0, %), all at rate O(T—%/2).

Reviewer 1. -“Could you remove the assumption that variance of quantization < o and allow it grow with ||x||?”.
Response: Yes! For both strongly-convex and non-convex losses, we can assume that E||Q(x) — x||? < ¢2||x]|? and
modify the proof as follows. For strongly-convex, in eq. (21) we’ll have E||z; — x;||? < o?||x¢||? < 202||x; — x5 +
202 |x%||2. The first term ||x; — x,||? can be simply merged in eq. (22); and the second term can be bounded as
[l |12 < 2||x% —x*||2 +2||x*||? where ||x%, —x*||? decays by O(T~%) and ||x*||? < 2(f(0)— £*)/u. For non-convex
settings, we can follow the proof in the paper and replace E||z; — x;||? < 02||x¢|? < 20?||x; — %4 + 202||%¢]|? in
eq. (37). The first term is consensus error and will be merged in 7} in eq. (39). The second term can be bounded
by noting that the function value decreases at each iteration and considering the typical assumption that f(x) — oo
when [|x|| — co. On the other hand, quantizers satisfying E[|Q(x) — x||? < o2 are indeed common in both theory and
practice; e.g., the low-precision quantizer, randomly rounding operator, quantization sparsifier studied in ref. [61].

-“Eq 10 should include the cost of computing the average iterate since in this paper, communication time is a bottleneck.”.

Response: Computing the average iterate contains vector-scalar multiplication and vector-vector addition; however, it
is known in systems literature that these are negligible and the dominant computation cost/time is induced by matrix
multiplication (e.g. gradient computation for least-squares) which we have modeled in the paper. Moreover, eq. (10)
characterizes the convergence rate vs. iterations (and not wall-clock time). Asynchronous-DSGD  QuanTimed-DSGD

- “Explain the difference between deadline-based & asynchronous”. --- !

Response: The top figure schematically shows the differences between < 1 p ;P
deadline-based and asynchronous methods. In particular, in Asynchronous < 5 -
DSGD, each worker continuously updates its local model according to the ) S— -Td T, T;
most recent models of its neighbours, while in our deadline-based method, ; 5e
each worker computes a batched gradient by the deadline 7 (with a
random size depending on the speed) and then updates synchronously with
other workers. We will add this discussion in the revised paper.

nodes

—a— Q-DSGD, Batch size = 30, s =6
——QuanTimed-DSGD T;/E[V] =30, s =6
—o—DSGD, Batch size = 30

Reviewer 3. -“Experiments are too simple to show the efficacy of the

method, merely MNIST/CIFARIO. Size of the neural network is too small.”. g
Response: We have conducted more experiments over the ImageNet -
dataset which is known as a complicated dataset. As the middle figure 1.3¢
demonstrates, for a binary classification, our method significantly im-
proves upon the benchmarks over this dataset as well. We also carried 125} ‘
out experiments on a deeper neural network with 4 hidden layers and 0 1000 Time (sec)

ImageNet Dataset

3000 4000

our method provides significant speedups over the benchmarks (bottom 1.4 ——DSGD Batch size = 50
figure). This further demonstrates that our method is less sensitive to the —e—QuanTimed-DSGD T,/E[V] = 50, s = 5
dataset or the neural network. Nevertheless, we would like to highlight that L3l ——Q-DSGD Batch size = 50, s =5
our focus in this paper is to develop the theory of a provably converging,
straggler-resilient and communication-efficient framework. 4-Layer
@ Neural Network
- “Whats the activation function for the fully connected neural network? 3
If the ReLU activation was used, the tested loss function is not smooth.”
Response: In all experiments, a sigmoid function is used as the activation 1.1}
function for the neural network which makes the loss function smooth and

hence compatible with the theory. Extending our results to the nonsmooth

. A 0 1000 Time (sec) 3000 4000
losses (e.g. ReLU) is our future direction. (sec)

- “First order stochastic methods are sensitive to learning rate. The authors should report results with well-tuned rates.”.
Response: All the numerical results in our original submission indeed correspond to well-tuned learning rates; we will
highlight this point in the revised paper.



