
We thank all the reviewers for their time and valuable comments. For space limitation, we focus on addressing the main1

comments. Reviewer #1 wants to see an algorithm that works when b∗ has negative values. We show below that our2

algorithm can still be used in that case to recover part of the parameters with small number of samples. Both Reviewer3

#2 and Reviewer #3 ask about generalization to other settings. We discuss below one possible approach to learn a4

two-layer generative model. Extending our results to more general settings is definitely an interesting direction and we5

hope that our current work can encourage more people to work on this important problem.6

Reviewer #17

“Provide an algorithm to output a distribution that’s close to the target, even if b has negative components.”8

When b∗ has negative components, running our algorithm can still recover part of the parameters. Specifically, let9

Ω := {i ∈ [d] : b∗(i) ≥ 0} be the set of coordinates that b∗ is non-negative, then the output of our algorithm b̂ and Σ̂10

satisfies: 1) the sub-vector b̂Ω is close to b∗Ω; 2) the sub-matrix Σ̂Ω×Ω is close to W ∗
ΩW

∗T
Ω . This is because our algorithm11

only uses the i-th and j-th coordinates of the samples to estimate 〈W ∗(i, :),W ∗(j, :)〉 and b∗(i), b∗(j). As a result, our12

guarantee (Theorem 1 in our paper) still holds for this part of the parameters. We will mention this in the paper.13

For the rest part of the parameters, if the negative components of b∗ are small (in absolute value), then the error of our14

algorithm will be also small. Specifically, let Ωc be the complement of Ω. Suppose that b∗(i) ≥ −η‖W ∗(i, :)‖2 for all15

i ∈ Ωc and for some η ≥ 0, then given Õ(ln2(d)/ε2) samples, the output of our algorithm satisfies |̂b(i) − b∗(i)| ≤16

max(η, ε)‖W ∗(i, :)‖2, for all i ∈ Ωc. One can show a similar result for 〈W ∗(i, :),W ∗(j, :)〉, for all i ∈ Ωc. We see17

that the error from negative bias is small if η = O(ε). If η is large, i.e., if b∗ have large negative components, then18

estimating those parameters becomes difficult (as indicated by Claim 2 in our paper). In that case, maybe one should19

directly estimate the distribution (as suggested by the reviewer). This is an interesting direction for future research.20

Reviewer #2 and #321

“What happens when we increase the number of layers?”22

Besides the single-layer ReLU generative model considered in our paper, we also thought about extending our results to23

learning a two-layer generative model. Let D(A,W, b) be the distribution of a random variable x ∈ Rd defined by24

x = A ReLU(Wz + b), where z ∼ N (0, Ik), A ∈ Rd×p,W ∈ Rp×k, b ∈ Rp.

Given i.i.d. samples x ∼ D(A,W, b), can we recover the parameters A,W, b (up to permutation and scaling of the25

column vectors in A)? While this problem seems hard in general, we find an interesting connection between this26

problem and non-negative matrix factorization (NMF).27

In MNF, we are given a non-negative matrix X ∈ Rd×n and an integer p > 0, the goal is to find two non-negative28

matrices A ∈ Rd×p,M ∈ Rp×n such that X = AM . This problem is NP-hard and [AGKM12] give the first29

polynomial-time algorithm under the “separability” assumption (Definition 5.1 in [AGKM12]).30

In our problem, we are given n samples {xi}ni=1 from D(A,W, b). Stacking the samples gives a matrix X ∈ Rd×n:31

X = AM, where M(:, i) = ReLU(Wzi + b), i ∈ [n].

Note that M ∈ Rp×n is non-negative while the entries of A can have arbitrary sign. If M satisfies the “separability”32

condition [AGKM12], and A has full column rank (i.e., the columns of A are linearly independent), then we can still33

use the same idea of [AGKM12] to exactly recover A and M (up to permutation and scaling of the column vectors in34

A). Once M ∈ Rp×n is recovered, estimating W and b is the same problem as learning one-layer ReLU generative35

model, which can be done by our algorithm. One problem with the above approach is that it requires the M ∈ Rp×n36

matrix to satisfy the “separability” condition. This is true when, e.g., W has full row rank, and the number of samples37

is Ω(2k). Developing sample-efficient algorithms for more general cases is definitely an important research direction.38

Reviewer #239

“Does similar results extend to more general input distributions?”40

This is an interesting research direction. In our paper we focus on the standard Gaussian distribution for two reasons:41

1) It has already been used in VAEs, GANs, and reversible generative models as the input distribution; 2) Even for42

this simple input distribution, we already encountered some technical difficulties such as negative bias vector (see our43

response to Reviewer #1). It is not easy to directly extend our algorithm to other input distributions, but our high-level44

idea, i.e., first estimate the norm and then estimate the pairwise angle, may still be useful.45
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