
[Reviewer 1- Baselines [37] and [40]] Thank you for bringing this discussion up. We would like to clarify that, on a1

high level, the discussion regarding sample complexity (in lines 119-123) of the second-order statistics and third-order2

statistics applies to both the work in [40] (Zhang et al, 2014) and [37] (Traganitis et al, 2018). However, since [37] uses3

the third order statistics directly (without grouping the data) like what we do, it is more fair to compare with [37]. Since4

[40] needs to group the data first and then estimates certain "group third-order statistics", it may need more samples to5

obtain accurate estimates. We will add one remark on this subtle point in the final version.6

κ(Am) MSE

3.15 0.006
6.33 0.012
10.14 0.033
60.32 0.074

100.82 0.086

K MSE

2 0.002
3 0.013
4 0.021
5 0.024
6 0.025

Figure 1: Synthetic-data experi-
ments. MSE against κ(Am) and K,
respectively. N = 104, p = 1,K =
3; κ(Am) is controlled by assigning
Am = IK + β ∗ rand(K,K), fol-
lowed by column normalization and
changing β; averaged over 10 ran-
dom trials.

[Reviewer 1 - MATLAB-based Runtime] We fully agree with the reviewer7

that MATLAB-based implementations may not exactly reflect the runtime perfor-8

mance in real systems. On the other hand, we hope that the runtime performance9

in the paper can serve as a useful reference—in case one would like to gain some10

insights (instead of the exact runtime) on the computational complexities of the11

algorithms. Nevertheless, we do agree with the reviewer on this point, and will12

add a remark to notify the readers.13

[Reviewer 2 - More Insights on The Theorems] Thank you for this nice sug-14

gestion. It is perhaps not easy to directly verify the theorems on real data since15

some of the problem parameters, such as ε, κ(Am) and σmax(Am), are hard16

to acquire. In our experiments, we change the parameter p that directly affects17

the number of available samples S for estimating the second order statistics; p18

also affects T (m), i.e., the number of annotators who co-label data with m. To19

gain more insights, we will also add a number of synthetic-data and real-data20

experiments in the supplementary materials; see, e.g., Figures 1-2. Again, thanks for this constructive comment.21
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Figure 2: Real-data exper-
iment. Classification error
against the number of sam-
ples S on UCI ‘Adult’.

[Reviewer 2 - Lines 180-183] The reviewer is correct: sparser annotator responses yield22

lower values of S and thus the estimation error bound will get worse. We will re-write23

this part. In particular, "does not hurt" will be removed.24

[Reviewer 3 - Label Estimation Accuracy] Thank you for this good point. To analyze25

the label estimation accuracy, one way is to adopt and modify the results in [40]. To be26

specific, after model identification, we employ a MAP predictor (see [37,40]) for label27

estimation. Let yn denote the true label of sample n. Assume that the conditions in28

Lemma 11 in [40] hold, and that Am(km, k) ≥ ν, for all m, km, k. In addition, assume29

that the MultiSPA-output estimates satisfy ‖Am − Âm‖∞ ≤ ϕ = min
{
ν
2 ,

νD
16

}
, for all30

m, where D is defined as in [40]. Then, if there exist at least M̃ = 4 log 2K

D
annotators,31

the MAP predictor yields ŷn = yn for all n. Also notice that Theorem 2 in [37] can32

also be modified to characterize the label estimation accuracy using the models output by33

MultiSPA and MultiSPA-KL.34

Figure 3: An example
where the confusion matrix
is specialized for class 2,
but not diagonally domi-
nant; α, ε ∈ [0, 1].

[Reviewer 3 - Confusion Matrices without Diagonal Dominance] Please note that35

MultiSPA and MultiSPA-KL do not need a particular Am to be diagonal dominant. It36

only requires that, among annotators m1, . . . ,mT (m), there exists at least one annotator37

who is specialized for class k (i.e, who does not confuse class k with other classes) for38

every k = 1, . . . ,K. Such annotators need not to have diagonal dominant confusion39

matrices; see Fig. 3. In our implementation, diagonal dominance was only used to fix40

the column permutation mismatches among the Âm’s. But this is not the only way for41

fixing the mismatches. One can use the method as stated in Sec. D in the supplementary42

materials that does not need diagonal dominance. The method generally works; e.g., for43

MultiSPA on the Bluebird data, it outputs a classification error of 12.96% (while using44

diagonal dominance yields 13.88%); on the Web data, it gives 14.32% (15.22% using45

diagonal dominance). Nevertheless, we have observed that using diagonal dominance46

gives constantly good results over different datasets, while the method in Sec. D is not as stable (e.g., on the Dog data,47

20.20% classification error v.s. 17.09% using diagonal dominance). Our understanding is that for real data, diagonal48

dominance is a reasonable assumption, and thus exploiting this structure may be beneficial. We will add these results.49

[Reviewer 3- Minimax-entropy Method] We have observed that Minimax-entropy is also a strong candidate. However,50

the performance can be somewhat unstable especially when the annotator response data is very sparse. Our guess is that51

the objective function of the Minimax-entropy method involves some regularization parameters which are intended to52

prevent overfitting of the data as pointed out by the authors. For the TREC dataset that is very large but extremely sparse,53

the algorithm is somewhat sensitive to the regularization parameters—manually finding an ‘optimal’ regularization54

parameter is not easy and the results can be very far from being ideal from time to time.55


