
We thank the reviewers for their insightful feedback, and we appreciate the opportunity to improve our paper. We will1

address typos and notational inconsistencies in the updated version.2

Response to Reviewer 1:3

We would like to emphasize that Theorem 1 is the most important contribution of our paper due to its generality.4

By considering the set of all possible classifiers, it provides lower bounds on adversarial robustness for any pair of5

class-conditional distributions. As we show in our experimental results in Section 6, we are able to obtain lower bounds6

for arbitrary real-world datasets by constructing the empirical distribution for these. In our estimation, these results7

serve to provide theoretical validation for adversarial training for low perturbation budgets as well as to highlight the8

gap to optimality for higher budgets.9

Our focus on the Gaussian case, as a concrete application of the general theorem, is due to the attention this setting10

has received in relevant previous work such as Schmidt et al. and our results provide a conclusive characterization of11

the behavior of the optimal loss under different adversarial constraints. We show that the common assumption of the12

optimality of a linear classifier even in the presence of an adversary is justified through a primal-dual equivalence.13

In the Gaussian case, our sample complexity result follows directly from the expression for the optimal loss. In the14

updated version, we will add experiments with synthetic data which validates this result empirically using standard15

learning algorithms.16

Response to Reviewer 2: We thank the reviewer for pointing us to Dohmatob’s “Generalized No Free Lunch Theorem17

for Adversarial Robustness” from ICML 2019. There are several key differences between the results as well as methods18

in the two papers. We require very mild assumptions on the example space, distribution, and adversarial constraints19

while the assumptions in Dohmatob’s paper are more restrictive. Further, ours explicitly concern the adversarial risk20

of the optimal classifier, while Dohmatob’s relate adversarial and ordinary risks of a classifier. Thus, our bounds on21

adversarial risk can still be nontrivial even when there is a classifier with an ordinary risk of zero, which is exactly22

the case in our MNIST experiments. Finally, while Dohmatob’s bounds become non-trivial only when the adversarial23

budget exceeds a critical threshold depending on the properties of the space, ours apply for any adversarial budget.24

We will add the explicit but mild conditions required on the example spaces, neighborhood relations, and potential25

functions throughout Section 3. X1 is a random example from class 1 and X−1 is an example from class −1. We will26

add back the explanation of this notation which we accidentally removed. P̃X1
should have been PX̃1

everywhere. We27

will add a more explicit description of X̃1 for the translate adversarial strategy. This makes the dependence on z explicit28

on line 196. We will also add a clearer description of the “translate and pair in place” coupling. Finally, in B.2., going29

from (2) to (3) is a standard calculation for the total variation distance between Gaussians with the same covariance,30

which we will add in the updated version.31

There are at least a few interesting examples of adversaries that produce examples in a different space than the clean32

examples, e.g. by erasing pixels in a image. Allowing symmetric nearness relations does not complicate the proofs, it33

only requires us to keep track of the difference between N(x) and N−1(x̃).34

While we were unable to find the same calculation for the upper bound on classification accuracy for the Gaussian case35

in Tsipras et al. [74], we did find it in concurrent work from the same group (Ilyas et al., Arxiv: 1905.02175). We will36

add a citation and comparison in the updated version.37

Response to Reviewer 3: While other papers such as Sinha et al. [68] and Dohmatob use ideas from optimal transport,38

we are the first to identify the precise distributional distance metric that provides tight lower bounds on adversarial39

robustness. Comparisons with Sinha et al. are in Section 7 and we compare to Dohmatob above. We would like to40

emphasize that our identification of this metric has allowed us to apply our theoretical results directly to practical41

datasets of interest.42

We are currently investigating the extension of our results to the multi-class case. There is a close connection between43

our framework and targeted adversarial examples in the multi-class setting. In this case, the transportation distances44

between all pairs of classes characterize the performance of an optimal classifier. Since the number of distances required45

for this characterization scales as the square of the number of classes, we are attempting to understand how much46

information is contained in the one-vs-rest distances. Exact characterization of classification accuracy with untargeted47

adversarial examples seems to require higher order interactions between class distributions. However, usable bounds48

using only pairwise distances are available, which we will demonstrate in follow-up work.49

As the reviewer correctly notes, the robust classifier loss on CIFAR-10 is high even for small budgets. Nevertheless, we50

will add these in the updated version of the paper. We also ran experiments with a 4× larger model for MNIST, per the51

reviewer’s suggestion, and observed some mitigation of the robust training issues up to an L2 budget of 4.6. We thank52

the reviewer for pointing this out and we will update our plots with this model.53


