
Additional Experiments (AE). Beyond the generation of per-image and universal adversarial attacks, we conduct an1

additional experiment (in response to R#1 & R#3): sensor selection via ZO optimization introduced by [1]. The goal of2

sensor selection is to seek the optimal trade-off between sensor activations and field estimation accuracy. The rationale3

behind the use of ZO optimization (ZOO) is to avoid the complex gradient computation that requires matrix inversion.4

In response to R#2, we compare ZO-AdaMM with a derivative-free optimization (DFO) solver COBYLA. Our results5

show that ZO-AdaMM yields 6.4% lower object value and saves 37.7% computation time under the same query number6

500. More detailed comparisons with DFO and ZOO methods will be added in the revision.7

Reviewer#1. Thanks for the comments! We have added a new application on sensor selection illustrated in above AE.8

Reviewer#2. [What the proposed method is compared to]→ ZO-AdaMM is compared to the class of ZOO methods,9

which utilize function difference based random gradient estimates; see Sec. 1 (lines 28-43) and Sec. 3 (lines 112-124). In10

spite of DFO, the literature on ZO counterparts of first-order algorithms has been vast. Different from direct search (DS)11

and model-based DFO methods [2,3], ZO-AdaMM is the first algorithm that bridges the random gradient estimation and12

the adaptive gradient method, where the latter is quite popular in the current DL/ML applications. Both our convergence13

(Table 1) and empirical results (comparison with 6 state-of-the-art ZOO methods) showed the quality of the proposed14

algorithm. [DFO literature and comparison]→ It is indeed valuable to enrich our related work on DFO. Thanks! In the15

revision, we will review DS-based and model-based methods, and commonly-used DFO solvers [3]. There is also a16

connection from the simplex gradient [2] (in the linear model based DFO) to the randomized gradient estimation (in17

ZOO). We will compare our method with existing DFO solvers, e.g., PSwarm and NOMAD for DS methods and COBYLA18

and BOBYQA for model-based methods. A preliminary comparison with COBYLA was illustrated in AE.19

Reviewer#3. [ZO-AdaMM versus first-order AdaMM]→ ZO-AdaMM belongs to the class of ZOO methods, and its20

advantages appear when the gradient is (a) impossible or (b) difficult to obtain. For example, the design of adversarial21

examples falls into the case (a). The sensor selection example introduced in AE belongs to the case (b). If the gradients22

are known and easily computed, then ZO-AdaMM is not better than its first-order counterpart due to its worse dimension23

dependency; see Table 1. Since our experiments focus on black-box adversarial attacks, the first-order method would24

not be available in fact. However, following the comment, we perform the additional comparison between ZO-AdaMM25

and AdaMM in generating per-image adversarial perturbation. Not surprisingly, AdaMM reaches a better solution in26

terms of 43.6% reduction in averaged `2 perturbation and 11.8% enhancement in averaged attack success rate over 10027

ImageNet images. [Adversarial learning & other applications]→ The research in adversarial robustness of DL modes has28

rapidly gaining its popularity and attention in the past two years, e.g., design of black-box attacks at Adversarial Vision29

Challenge, NeurIPS’18. Many benchmark black-box attack methods were built on ZO optimization, e.g., ZO-SignSGD30

and ZO-NES (compared in the paper). Thus, we focus on the application in adversarial learning. Notably, ZO-AdaMM31

significantly outperforms 7 existing methods. However, we also conduct a new sensor selection experiment; see AE.32

[Choice of µ]→ It is shown from Eq. (19) that µ controls the bias of the gradient estimate. To obtain the desired33

sub-linear convergence rate, the existing work has to select µ small enough. However, this causes numerical issues34

[4]: the stochastic function difference could be dominated by the stochastic noise and fails to represent the function35

differential. Thus, the mildness of µ is an important metric. In the original experiments, we set µ = 5× 10−3 obeying36

the order of O(1/
√
d) since d� T , where d is dimension of ImageNet image, and T is number of iterations. We also37

conduct a more careful tuning on µ by searching 5 points in [5 × 10−4, 5 × 10−2]. We observe that µ = 2 × 10−338

yields the best result (in terms of the converged loss value) but with only a minor improvement (3.7%) compared to our39

original choice. [A in (65)]→ A refers to the sum of the first two terms at RHS of (65) (without the equal sign). [Why40

using Mahalanobis (M-) distance]→M-distance facilitates our convergence analysis in an equivalently transformed41

space, over which the analysis can be generalized from the conventional projected gradient descent framework. To42

get intuition, let us consider a simpler first-order case with the x-descent step given by Algorithm 1 as β1,t = 0 and43

X = Rd: xt+1 = xt − αV̂−1/2
t ∇f(xt). Note that the ZO case is more involved but follows the same intuition. Upon44

defining yt , V̂
1/4
t xt, the x-update can then be rewritten as the update rule in y: yt+1 = yt−αV̂−1/4

t ∇f(xt). Since45

∇ytf(xt) = (∂xt

∂yt
)T∇f(xt) = V̂

−1/4
t ∇f(xt), the y-update, yt+1 = yt − α∇yf(xt), obeys the gradient descent46

framework. In the constrained case, a similar but more involved analysis can be made, showing that the M-projection in47

the x-coordinate system is equivalent to the Euclidean projection in the y-coordinate system which makes projected48

gradient descent applicable to the update in y. And the direct use of Euclidean projection in the x-coordinate system49

leads to divergence in ZO-AdaMM (Prop. 1). [Typos in (26) & (27)]→ Yes, “≥ 0" should be added at the end of50

equations. [Choice of stepsize]→ Yes, the stepsize interval should be reversed. In Table A1-A2, a stepsize out of the51

range was included to show that the attack becomes unsuccessful when the stepsize is below our choice (e.g., 9× 10−552

in Table A1 for ZO-PSGD), namely, the further reduction of stepsize does not improve the attack performance.53
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