
We would like to thank the reviewers for their kind and thoughtful comments.1

Reviewer #1 We have simplified Figure 3 considerably, removing STL (which uses biased gradients), and removing2

row C.3

1) We have updated the paper to clarify that the time and space complexity is O(KT ) for TMC, and O(K) for IWAE4

and TMC, where K is the number of importance samples per latent, and T is the treewidth (closely related to the5

number of latent variables associated with the largest factor). So in terms of asymptotic time and space for a single6

marginal-likelihood estimate, TMC is the most expensive. However, TMC has considerable advantages over both IWAE7

and SMC. In particular, while IWAE gives only K importance samples, TMC gives Kn, where n is the number of latent8

variables. As such, the key metric is the number of importance samples per unit time (IWAE: O(1), TMC: O(Kn−T )).9

In the worst case T = n so TMC is the same as IWAE, but more usually T � n so TMC dramatically improves over10

IWAE. The plain bootstrap SMC algorithm is also O(K), and does far better than IWAE, but has two problems that do11

not occur in TMC. First, the resampling step is non-differentiable (giving biased or high-variance gradients) and forces12

sequential structure on the computation. Second, the bootstrap particle filter displays particle degeneracy, so we will13

usually end up with only one sample for the earlier latent variables. Any attempt to mitigate particle degeneracy (e.g.14

using backward sampling) has the same complexity as TMC, but still has the problems associated with resampling.15

2) We have included an example with 50 univariate Gaussian latent variables, and with a randomly connected undirected16

graph with a tree-width of 4 (details in revised paper). Even 16 million IWAE importance samples, (15 s on CPU)17

is insufficient (marginal likelihood estimate is ∼ −1400). In contrast, only K = 64 TMC importance samples were18

required (0.4 s on CPU), giving a marginal likelihood estimate of −69.9, compared to a true value of −67.1. Ultimately,19

the asymptotic results described above imply that, if the number of latents is considerably greater than the tree width20

(i.e. there are exploitable conditional independencies), then TMC will give dramatic benefits over IWAE.21

3) We have redone Fig. 1 (which is not a linear chain, see Appendix Fig. 6A) using a single-threaded CPU implementa-22

tion. Replicating Fig 1BD, we find similar, albeit less extreme results, with TMC always being faster than SMC. This23

conflicts with the asymptotic results, which suggest that TMC (O(K2)) should be slower than SMC (O(K)). This24

conflict likely arises because of the overhead of the Python interpreter: in this model with TMC, we can perform the25

reduction over all N latent variables in a single efficient tensor operation (on one CPU), whereas the SMC resampling26

step requires us to use an explicit Python for-loop.27

4) SMC gives almost exactly the same predictive performance as TMC in SSM/HMM’s but is slightly faster (O(K)28

rather than O(K2)). This is because SMC is very well-suited to SSM/HMMs: the advantages of TMC arise in more29

complex models and in training recognition models (described above and in the paper).30

Reviewer #2 Thanks for the comments on clarity: following your suggestions we have substantially updated the31

manuscript. In particular, we have included Eq. 36 in the main text, and also included the corresponding choice of32

factors. This should help to clarify that Eq. 11 applies to any directed graphical model (we have also included references33

to the well-understood relationships between directed graphical models and factor graphs, e.g. Bishop 2006). We have34

also stated explicitly that Eq. 12 arises by substituting Eq. 11 into Eq. 9. Finally, thanks for pointing out that we had35

not referenced sections in the Appendix: this is now fixed.36

In the example in Fig. 1, we consider a model that does not have a chain-structure (see Appendix Fig. 6A). In this case,37

IWAE performs arbitrarily badly due to the high-dimensionality of the state-space. Further, see the Reviewer #1 (2) for38

details of an additional experiment with a complex, random graphical model structure.39

Reviewer #3 We agree, the connections to DReGS are extremely interesting. We had also expected that DReGS +40

TMC (see Appendix G for derivation) would give the best performance (and indeed, it would only strengthen the paper41

if that were the case). However, in our experiments, we found DReGs + TMC to be numerically unstable, despite42

careful effort in using numerically stable operations (e.g. see Appendix F), and sharing code between vanilla TMC and43

DReGs + TMC. This numerical instability is particularly problematic because standard tricks to cope with instability44

(e.g. gradient clipping) give biased gradients and appeared to degrade performance. We are currently investigating these45

issues. In particular, the DReGs proofs and results seem to suggest that as we use a very large number of importance46

samples (Kn), we should have high-SNR gradients, and hence have numerically stable, rapid learning. However, in47

TMC, the importance samples (in the full joint space) are not independent — they are highly structured — with only K48

different values for each latent variable, and we are currently investigating the hypothesis that this structure interacts49

poorly with DReGs.50

We have put the anonymised code here. This is special-case code build around each experiment: my intention is to51

build an open-source probabilistic programming language around TMC.52

https://github.com/anonymous-78913/tmc-anon

