
We thank all the reviewers for their diligent reading of our paper, we address their comments in order of appearance:1

Reviewer #1 Presentation of the theorem We thank the reviewer for the suggestions concerning the presentation of2

the theorem, which we will implement in the final version. Lipschitz The function f(m) is Lipschitz-continuous and3

we take our initial conditions to be deterministic by assumption A3, so the uniqueness of the solution is guaranteed.4

Implications of Eq. (10) This result only applies to networks where the first layer is trained, and we report different5

behaviours when we train both layers in Sec. 3. We used SGD for training in both cases, so the (indirect) implications6

of Eq. (10) and (15) are that firstly, the (implicit) regularisation observed when training both layers is not a property of7

just the algorithm, and thus secondly, for general neural networks, we still have to find the precise mechanism allowing8

bigger networks to generalise better. Analytical results We cannot solve the ODE in closed form. We obtain our9

analytic results by linearising the equations in the limit of small noise σ around the fixed point at zero noise. Line 8210

We mean that there exist weights which are fixed points of SGD dynamics, in the sense that the generalisation error will11

stay stationary at a value ε̂g if SGD is started with these weights. However, starting from random initialisation, SGD12

finds weights with a generalisation error that is higher than ε̂g. Line 118 The teacher-student overlaps Rµ = [Rµin]13

capture the similarity between the weights of the ith student node and the nth teacher node. Line 124 By “a closed set14

of ODEs”, we mean a set of coupled ODEs where the variables that appear in them are governed by an ODE in that set.15

Our ODEs do not have a known closed-form solution. Line 147 We mean that running SGD will yield networks where16

the generalisation error (=“performance”) improves or worsens with over-parameterisation (=“drastically different”).17

Reviewer #2 Message for practitioners: We have to be careful with the widely cited claim that bigger networks18

are better. It is not always true and we still have to understand the range of the cases in which it is. Eqs. S26-S3019

The reviewer is right that Eqs. S26-S30 are only valid for sigmoidal activation; we will emphasise this in the revised20

manuscript. Additional experiments and relation to mean field limit: We numerically checked the behaviour of21

εg when the number of student hidden nodes becomes much larger, see Fig. 1. This is the same plot as Fig. 4 of the22

main paper, only that we extended the range of K to 1000. We plot the final generalisation error after convergence.23

The plot demonstrates that the trend observed in the paper persists: the normalised network, where we train only the24

first layer and divide the network output by the number of hidden units, beats the performance of a two-layer network25

where we train both layers. We think our results connect with the cited mean-field analyses in that they suggest that the26

“distributional” fixed points corresponding to the mean-field analysis persist even down to relatively small sizes of the27

hidden layer. However, we also found other fixed points which are not captured by the mean field analysis, such as the28

one leading to the increasing generalisation error. Elaborating this connection and pinning down the differences more29

precisely is a very interesting direction for future research.30
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Figure 1: Asymptotic generalisation error of
linear networks as a function of the number of
student nodes K. Parameters: N = 100,M =
4, v∗ = 4, η = 0.01, σ = 0.01.

Reviewer #3 Validity of the expansion We found the results of31

our expansion in good agreement with numerics up to a noise with32

σ ' 0.3. Details on the numerical experiments: We will collect33

all the parameters needed to reproduce the experiments, including34

the reference to codes, in one section of the appendix, instead of35

scattering them in various places of the text. The stopping criterion36

is a fixed number of steps chosen in each experiment manually to be37

large enough to reach a stationary point of the generalisation error,38

usually on the order of 106N . Context of the MNIST experiments:39

We intended to verify the qualitative validity of our result in Eq. (10)40

for the final test error of networks where only the first layer is trained,41

in a setting which violates two key assumptions of our theoretical42

treatment: (1) that all inputs are i.i.d. draws from the multi-normal43

distribution and (2) that at every step, we use a previously unseen44

sample (xµ, yµ). Crucially, it is still another teacher that generates45

the labels for the images. Indeed, the plots in Fig. S7 show that46

substituting MNIST inputs (orange curve) for Gausssian inputs (blue) does not change the shape of the ε∗g ∼ L curve,47

with the minimal final test error occurring for K =M . Proof precisions. Regarding the reviewer’s comments on the48

proof (we will clarify all points in the final version): (i) The expectation Eµ is the conditional expectation conditioned on49

the state of the Markov chain at step µ, mµ. (ii) We use q for any but only one of the time-dependent order parameters50

and m to denote the set of all order parameters, resp. (iii) We were indeed not precise about the step from S11 to S12;51

we crucially also used assumption (A3) by which the initial macroscopic state is deterministic and therefore the average52

E in that line is just an average over the first sample shown during training. (iv) We kept the discussion of the coupling53

trick more compact than the other parts of the proof because it is not original, but due to Wang et al., Ref. 46. We will54

expand this section in the final version to make the paper more self-contained. The stochastic process bµ lives in the55

same space as mµ, and similarly for the deterministic process dµ. They do not require additional assumptions.56


