
Algorithm 1 MK Projected GD

Input: A,B ∈ PSD, k ∈ [[1, d]], η
V← Polar(AB)
while not converged do
L ← MK(V>AV,V>BV; k)
V← V − η∇VL
V← Polar(V)

end while
Output: E = Span{v1, ..,vk}

We thank reviewers for carefully reading our paper. We answer their questions1

below, but provide first two updates that are directly related to their remarks.2

I Subspace Selection: Alg. 1 from the paper was motivated by Prop. 6 (l.3

263). After benchmarking it carefully, we now believe it is not competitive4

with a projected gradient descent (PGD) on the basis vectors V of E (see5

right). The projection of V onto the set of unitary matrices is the unitary6

matrix in the polar decomposition of V. The complexity per iteration is that7

of computing MK and the polar decomposition. We initialize V =Polar(AB)8

because this is the optimal solution when A,B are co-diagonalizable. We9

tested this new algo. in the synthetic noisy setting (p.7), Fig.1 below. The10

PGD improves on the fixed direction (canonical basis) approach when k < 4, and remains competitive when k ≥ 4.11

I Map visualization using color transfer: All reviewers have pointed out that experiments in the paper did not illustrate12

the lifted transport maps/plans, but focused instead on distances. We experimented MK maps on color transfer, an13

illustrative task to visualize maps’ properties. In the MK setting, we project images on the 1D space of grayscale images,14

relying on sorting-based algos for 1D-OT, before solving small 2D-OT problems on the corresponding disintegrations.15

We compare runtimes and visual results with vanilla OT and sliced OT below. MK results are visually very similar to16

full OT, with a ∼ ×50 speedup that is comparable to sliced OT. We will provide other illustrations.
Source Full OT (runtime 2.67s) MK : Gray Projection (runtime 0.052s) Sliced OT (100 projs, runtime 0.057s) Target
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Figure 1: Synthetic data experiment (p.7): canonical directions vs PGD

Reviewer #1: I algo in terms of18

optimality, convergence, runtime,19

etc. The runtime involves a com-20

plexity per iteration equal to com-21

puting the polar decomp. and MK22

distance + gradient. Because the23

problem is non-convex we will24

stick to empirical evaluations and25

improve the presentation (p.7), as26

in Fig. 1 (right). I applications do not seem to be terribly important [...] more popular ones. Agreed. Color transfer27

was added as an illustrative example. We are now looking into applications to domain adaptation and biological datasets28

(Waddington-OT). I experiments section [...] a little confusing. We will add more context. The main purpose of the29

FID exp. (p.8) is to use data widely handled as samples from Gaussians. We show that even with a relatively small30

number of samples to estimate the covariance matrices, MK on the principal components has a stable behavior.31
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Figure 2: Mean distances from sample matrices to
full covariance matrix (FID setting, p.8)

Reviewer #2: I 1: E is indeed introduced later, l.62. We will fix this.32

I 2: PCA with a (random) subset. This counter-example is to show33

that the stability of MK is dependent on the chosen subspace. Permut-34

ing the principal directions is an adversarial setting used to showcase35

this. I 3: what does ‘underestimated’ mean [...] covariance matrices36

estimated [...] decent quality? In the setting of FID (p.8), p = 204837

and we used n = 2050. Fig. 2 (right) shows the covergence of38

sample to full (on all 200K data points) covariance matrices in Bures39

and L2 distance (averaged over 20 sample matrices). At n = 205040

the sample covariance matrices are close to having converged but41

not quite. However, the MK distance on the principal components42

is robust to the small amount of noise thus induced. We are glad to43

include this point in the discussion. I 4: [...] value of d2 [...] role of d2 in this context? As per the caption in the paper44

(Fig.4, p.7) d1 = 4, top row is d2 = 8 and bottom row d2 = 16. We will make this more explicit. As d2 increases, the45

MK distance for d1 ≤ k ≤ d2 increases as more noise is fitted by the transport map on the projection subspace.46

Reviewer #3: I experimental verification of that chapter’s suggestions, especially of Algo. 1? Semantic mediation47

(p.8) is an example of using MK with prescribed directions (l.242-249), and FID experiments (p.8) of using principal48

components. We have added a verification of the new PGD algo in the experiment on noisy data (Fig. 1). I Experiments49

with synthetic data seems informative, but semantic mediation etc are not convincing. We added more semantic50

mediation examples. We are considering domain adaptation and biological datasets. I Experiments on real data, and51

some more attention to selection of subspace E (experimentally). Agreed. The PGD approach is a first step in that52

direction (Fig. 1). We will also try it first in color transfer, domain adaptation and in biology (Waddington-OT).53


